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Abstract
We present a new model of speech motor control (TD-SFC)

based on articulatory goals that explicitly incorporates acous-
tic sensory feedback using a framework for state-based control.
We do this by combining two existing, complementary models
of speech motor control – the Task Dynamics model [1] and
the State Feedback Control model of speech [2]. We demon-
strate the effectiveness of the combined model by simulating
a simple formant perturbation study, and show that the model
qualitatively reproduces the behavior of online compensation
for unexpected perturbations reported in human subjects.
Index Terms: speech motor control, auditory feedback, task
dynamics, state feedback control, feedback perturbation, speech
production

1. Introduction
One of the outstanding issues in speech research is how the
central nervous system controls the rapid, complex articula-
tory movements produced while speaking. A number of mod-
els have been proposed to account for this extraordinarily facile
motor behavior, including (among others) the DIVA model [3],
Task Dynamics [1], and State Feedback Control [2].

DIVA combines articulatory and acoustic speech synthesis
with a neurologically-specified production model. DIVA, how-
ever, is only a trajectory-based kinematic model that does not
account for dynamics of the articulatory process. In contrast,
TADA is a dynamic model of the vocal articulatory process.
However, TADA does not include a model of how auditory feed-
back is used in speech. State Feedback control (SFC) is an ob-
server based model that postulates that sensory feedback is used
to update estimates of the current states of the vocal tract using a
state correction process. However, SFC model does not clearly
specify the dynamic process underlying vocal articulation.

We propose a novel speech production model, the Task
Dynamics-State Feedback Control (TD-SFC) model, combin-
ing a neuro-biologically inspired short-latency feedback control
scheme (derived from State Feedback Control) coupled with a
well-developed method for deriving utterance specific control
laws and generating the resulting articulatory and acoustic out-
comes (derived from Task Dynamics). We first describe the
model, then show its utility in qualitatively modeling human
behavior in response to unexpected acoustic perturbations.

2. Modeling Background
Both Task Dynamics and State Feedback control are elabora-
tions of a basic type of control system widely used in modeling
a variety of motor control domains: feedback control. In an
ideal feedback control system (Figure 1), a controller that gen-
erates a motor command ut based on a control law U and the
current state of the system xt. This motor command is passed to
the physical plant (for speech, the vocal tract), which generates
a change in the state of the system based on the motor com-
mand, the current state of the system, and the internal dynamics
of the plant itself. This new state xt+1 is used by the controller
to generate the next motor command xt+1.

Plant
xt+1 = f(ut,xt)

Controller
ut = U(xt)

ut

xt+1 (TaDA)

TADA
(control law) SFC

(state estimation)

Observer

yt+1

xt+1 (SFC)

Figure 1: A basic state feedback control system, showing the shared archi-
tecture behind both Task Dynamics and SFC. A controller generates a state-
dependent motor command u, which is sent to the plant to generate both changes
in the state of the system x and sensory output y. Both Task Dynamics and SFC
are versions of such a system for speech motor control. Task Dynamics has fo-
cused on developing the appropriate control law while assuming direct knowledge
of the system state (ideal state feedback, blue line). SFC has focused on how the
central nervous system can estimate the current state of the production system
from sensory feedback, which is then passed to the controller in lieu of direct
state knowledge (the observer, shown in red).

Such an ideal feedback controller has two principal prob-
lems. First, the human central nervous system (CNS) cannot
know the current state of the production system–the only infor-
mation available to the CNS is sensory information. Sensory in-
formation is problematic as it 1) reflects the consequences (au-
ditory, somatosensory, etc) of the state of the production system
rather than the state of the system itself 2) is corrupted by vary-
ing amounts of neural noise and 3) is delayed in time relative



to the true state. SFC was developed to address these issues by
modeling a way the CNS could optimally estimate the state of
the production system from noisy, delayed sensory signals [2].

The second problem with the ideal feedback control sys-
tem described above is that the control law governing how the
system changes is unknown. At least for speech, any such con-
troller must be quite complex. Task Dynamics, and particularly
the Task Dynamics Application (TaDA), provides a model of
this control law, and is able to generate state-dependent motor
commands that drive changes in the speech articulators [1, 4].

While both SFC and Task Dynamics have evolved out of a
general feedback controller, they have focused on refining en-
tirely different parts of the model. Task Dynamics has devel-
oped the controller, while assuming that the instantaneous state
of the speech production system can be known without error.
SFC has modeled the how the CNS can estimate the state of the
system, but put off understanding how that state could be used
by the controller to generate motor commands.

2.1. Task Dynamics Application (TaDA)

The Task Dynamics Application (or TaDA) software [5, 6, 4]
implements the Task Dynamic model of inter-articulator speech
coordination with the framework of Articulatory Phonology [7].
Based on any arbitrary orthographic (ARPABET) input, TaDA
uses a feedback control schema to control a configurable artic-
ulatory speech synthesizer [8, 9], generating both articulatory
and acoustic output.

In TaDA, articulatory control and functional coordination of
the speech articulators is accomplished with reference to speech
‘tasks’ which are coordinated together in time. Speech tasks, or
’gestures’, are taken to be constriction actions of the vocal tract
(e.g., close the lips), with specific spatial targets and temporal
extents. Each gesture controls multiple speech articulators that
are used coordinatively to achieve that particular task (e.g., the
upper lip, low lip, and jaw move together to close the lips) [7].

From a particular utterance, the relevant tasks are selected
by first by converting the orthographic input to the model to
a phonetic string using a version of the Carnegie Mellon pro-
nouncing dictionary that also provides syllabification. The syl-
labified string is then parsed into articulatory gestures and a
langauge-specific model of coordination between gestures is
used to generate the temporal activations of each gesture in an
utterance, known as a gestural score.

The gestural score represents the Task Dynamic control law
that governs the behavior of the the model. Each gesture is mod-
eled as as a point attractor with second-order mass-spring dy-
namics, which when active forms part of the multi-dimensional
control law that governs how the vocal tract changes through
time. Changes in the vocal tract model are further mapped to
the vocal tract area function.

The Task Dynamics model of speech articulation is as fol-
lows (after [1]):

Mẍ + Bẋ + Kx = u (1)

x = f(a) (2)
ẋ = J(a)ȧ (3)

ẍ = J(a)ä + J̇(a, ȧ)ȧ (4)
where x refers to the task variable (or goal variable) vector,
which is defined in TaDA as a set of constriction degrees (such
as lip aperture, tongue tip constriction degree, velic aperture,
etc.) or locations (such as tongue tip constriction location). M
is the mass matrix, B is the damping coefficient matrix, and K

Figure 2: A visualization of the Configurable Articulatory Synthesizer (CASY)
in a neutral position, showing the outline of the vocal tract model. Overlain are
the key points (black crosses) and geometric reference lines (dashed lines) used
to define the model articulator parameters (black lines and angles), which are: lip
protrusion (LX), vertical displacements of the upper lip (UY) and lower lip (LY)
relative to the teeth, jaw angle (JA), tongue body angle (CA), tongue body length
(CL), tongue tip length (TL), and tongue angle (TA).

is the stiffness coefficient matrix of the second-order dynami-
cal system model. u is a control input, while J is the Jacobian
matrix of the Forward Model.

However, in any motor control scheme, we cannot directly
control these task variables. Rather, we control the lower level
articulators (or, at a level not modeled here, muscles or motor
neurons). As such, TaDA generates changes of the positions of
the organs of the model vocal tract (articulatory variables, a)
which can be nonlinearly related to the task variables using the
so-called ‘direct kinematics’ relationship.

2.2. The State Feedback Model of Motor Control

State feedback control (SFC) is the combination of a control law
acting on a state estimate provided by an observer [2]. It is so
named because if the state xt of the vocal tract was available to
the CNS via immediate feedback, then the CNS could control
xt directly via feedback control. In other words, a fundamen-
tal principle of SFC is that control must be based on a internal
estimate of the state xt because xt is not directly observable
from any type of sensory feedback, and furthermore, the sen-
sory feedback that comes to the higher CNS is both noisy and
delayed [10].

The speech production SFC model is a neurally plausible
formalization of this concept, which includes an observer that
ideally estimates the state of the vocal tract. Based on a copy
of the motor command, the observer estimates the future state
of the vocal tract, generates the predicted sensory consequences
of that predicted state, compares the predicted sensory expecta-
tions with actual sensory feedback to generate a sensory error,
and corrects the state prediction if any error is found.

3. Proposed Model: TD-SFC
In order to address the shortcomings of the current implemen-
tations of both Task Dynamics and State Feedback Control,
we have developed a hybrid model that combines the insights
from each model into a larger feedback control framework. A
schematic of the current model, TD-SFC (Task Dynamics-State
Feedback Control), is shown in Figure 3.

The dashed blue box replicates the current Task Dynamics
model. This model contains 1) a controller, 2) a model vocal
tract or plant that receives a motor command from the con-
troller and produces changes in both articulatory and acoustic
state, and 3) a model to generate acoustic output from time-
varying articulatory trajectories. Note that the gestural score,
part of the controller, essentially defines an utterance-specific,
time-varying control law that determines how the state of the
system will change in a state-dependent manner. Here we rep-
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Figure 3: The proposed hybrid TD-SFC model. This model, based on the shared feedback control architecture of Task Dynamics and SFC, includes the controller and vocal
tract model from TaDA (in blue) and an implementation of SFC-style state estimation (in red). The observer includes predictive components (green arrows) and mechanisms
to correct predictions based on sensory feedback (red arrows).

resent the state of the vocal tract xt = [xt ẋt]
T at time t by a set

of constriction task variables xt and their velocities ẋt. Given
a gestural score generated using a linguistic gestural model as
described earlier, the Forward Task Dynamics model allows us
to compute the state derivative ẋt as follows:[

ẋt

ẍt

]
=

[
0 1
−K
M

−B
M

] [
xt

ẋt

]
+

[
0
u

]
(5)

Next we use Equation 2 to perform an inverse kinematics map-
ping from the task accelerations ẍt to the model articulator ac-
celerations ät, a process which is also dependent on the current
state of the plant (output from forward kinematics). Euler in-
tegration allows us to compute the model articulator positions
and velocities for the next time-step, which effectively “moves”
the articulatory vocal tract model. We then arrive at the cor-
responding state of the vocal tract at the task level by running
the forward kinematics model f (see Equation 2). Finally, an
appropriate synthesis model converts the model articulator and
constriction task values into output acoustic parameters yt.

Note that the current version of TaDA assumes perfect ob-
servability and feedback of the current vocal tract state at every
iteration of the model (represented by the dotted blue arrow in
Figure 3), which is unrealistic for the human CNS given the va-
riety of reasons discussed above. Incorporating state feedback
as prescribed by the SFC model (red box in Figure 3) allows us
to overcome this limitation.

The basic concept of SFC is that a copy of the motor com-
mand (”efference copy”) is passed to an internal model of the
vocal tract. Based on this efference copy, the internal model
generates 1) an estimate of the next state of the vocal tract and
2) an estimate of the sensory consequences of the estimated
state. In our model, the output of the forward dynamics model
(ẍt, which is equivalent to the motor command) is passed to

the internal model. The observer then estimates how this motor
command would effect the speech articulators by replicating the
inverse kinematic model (generating ˆ̈at) and the Euler integra-
tion model (generating ât, ˆ̇at). The expected acoustic state (ŷt)
is then derived based on the predicted articulatory state.

Crucially, the SFC model also evaluates the acoustic sen-
sory error ∆yt between the estimated model acoustics ŷt and
the actual acoustics yt and passes this value to a state estimator
that computes a state error correction estimate et = ∆xt. In
our current implementation of the model, we use an Extended
Kalman Filter (EKF) [11] to perform the state estimation. The
updated state estimate ∆xt|t in this case is given by:

∆xt|t = ∆xt|t−1 + Kt∆ỹt (6)

where ∆ỹt is the innovation or measurement residual and Kt is
the Kalman Gain, which is computed in the following manner:

Kt = Pt|t−1J
T
ht

(JhtPt|t−1J
T
ht

+ Rt)
−1 (7)

Pt|t−1 = JftPt−1|t−1J
T
ft + Qt (8)

where Jft represents the Jacobian of the process model F at
time t, Jht is the Jacobian of the observation model H at time
t, and Pt|t−1 refers to the predicted covariance estimate. Qt

and Rt indicate process and observation noise, respectively.
Note that one of the challenges in implementing such an EKF is
that both the process model F (that provides a functional map-
ping from ∆xt−1 to ∆xt) as well as the observation model
H (that maps from ∆xt to ∆yt) are unknown. In order to
solve this problem, we learn the process model and observation
model functional mappings required for Extended Kalman Fil-
tering using Locally Weighted Projection Regression, or LWPR,
a computationally efficient machine learning technique [12].
While we do not here explicitly relate this machine learning



process to human learning, such maps could theoretically be
learned during early speech acquisition, such as babbling [3].

We used the current version of TaDA (without SFC-
style state estimation) to generate 972 vowel-consonant-vowel
(or VCV) sequences corresponding to all combinations of 9
English monophthongs and 12 consonants (including stops,
fricatives, nasals and approximants). We then extracted
10-dimensional constriction task variable trajectories and 4-
dimensional acoustic variable trajectories (corresponding to the
first four formants, F1 - F4) from this dataset, and used this to
train the mappings for the process and observation model using
LWPR.

Once the process and observation models are trained, the
Extended Kalman Filter produces estimates of the state error
et = ∆xt, which is subtracted from the current state estimate
xt to produce a corrected vocal tract state estimate, x̃t, which
is in turn fed back to the controller. All motor commands in this
system are generated based on this estimated state, rather than
the actual state of the system.

4. Simulation Experiments
4.1. Response of model to altered feedback

One of the strongest pieces of evidence that the speech-
production system uses acoustic feedback to control ongoing
speech comes from studies which perturb the spectral compo-
nents of speech in real time [13, 14, 15]. In these studies,
subjects repeatedly produce either a single word with an ex-
tended vowel or a sustained vowel while listening to feedback
of their own voice played back in real time via headphones. On
a random subset of trials, their speech formants are perturbed
(either F1 alone or F1 and F2). Subjects compensate some-
what, though not completely, for this unexpected perturbation
by shifting their own formants in the opposite direction (e.g. a
positive shift in F1 played back to the subject induces a negative
F1 shift in the subject’s production). These compensations gen-
erally begin roughly 200 ms after the onset of the perturbation
or, for experiments with continuous perturbation throughout the
production of a word, the vowel onset.

These results are generally taken as evidence that vowels
have an explicit acoustic target [16]. We hypothesized that this
compensatory behavior could, alternatively, be produced by a
system with articulatory, rather than explicitly acoustic, goals.
Although the targets in such a system might be in articulatory
space, the actual articulatory state of the system cannot be di-
rectly known; rather, the current state must be estimated from
1) the expected outcome of produced motor command and 2)
sensory feedback. In such a system, a given motor command
issued to achieve a particular articulatory task would generate
a sensory feedback expectation, which could then be compared
with incoming sensory feedback. Any discrepancy between the
expected and actual sensory feedback would generate a sensory
error, which could be used to update the estimate of the current
articulator state. Thus, introducing an error in auditory space
could cause the speaker to (incorrectly) estimate the state of
their articulatory system, leading to corrective movements.

4.2. Simulation and results

In order to study the behavior of the TD-SFC model, we sim-
ulated a simple altered auditory feedback experiment. We per-
turbed F1 of the vocal tract acoustic output yt by 100Hz. Since
the model acoustic output ŷt is unperturbed, this should result
in a large feedback error. We would then expect the model to
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compensate for this large feedback error by lowering F1.
Figure 4 shows the results of one example simulation run

of the TD-SFC model for this experiment. We observe that af-
ter perturbing the plant F1 (in blue) by 100Hz at t = 50ms,
the model F1 (red) trajectory displays compensatory behavior
by lowering F1 below the baseline of 500Hz, which is in line
with previous studies on altered auditory feedback perturba-
tions. Figure 5, which visualizes the entries in the observation
Jacobian matrix Jht that affect F1 in particular, allows us to ob-
serve that the main constriction task variables which affect F1
include the tongue tip constriction location and degree.

5. Summary
We have proposed a new speech production model, TD-SFC,
based on the shared feedback control architecture of prior ver-
sions of Task Dynamics and State Feedback Control models.
We have shown that this model, though still under development,
is capable of correcting for sensory perturbations, producing
corrective responses that qualitatively match human behavior,
despite having no explicit acoustic or auditory target.
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