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Goal: create a state feedback control model of 
speech motor control [1] that includes hierarchical 
control of both high-level tasks and low level 
articulation [2,3] and incorporates sensory feedback. 

Conventions:                 Plant (CASY model [4]): 
x: Task positions (x) and accelerations (ẋ) 
ẍ: Task accelerations 
a: articulator positions (a) and accelerations (ȧ) 
ä: articulator accelerations (motor commands) 
y: sensory information, includes both  

  auditory + proprioceptive signals 
�: prediction 
à: predict     
à: correct 
 
 
 
Note: we currently implement tasks as vocal tract constrictions [2,5], but similar 
architectures could be used for tasks in other spaces (e.g., auditory or somatosensory) 
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tive to the size of this compensation. The second formant
!F2" showed small concomitant changes toward the opposite
vowel category as with F1, but these were not statistically
significant and again demonstrated relatively large variabil-

ity. For the condition where F1 feedback was shifted down-
ward in frequency, one subject correctly identified that /!/
was being altered occasionally in an exit interview. His data
were not atypical and he was not excluded from the analysis.
No other participants recognized the manipulation.

The difference between average test and pretest trials
was determined for each block number for formants F1 and
F2, as well as the percent compensation and percent change
relative to the average perturbation. These are given in Table
I for the condition where feedback F1 was pushed upward on
average +136 Hz, and Table II, where F1 was pushed down-
ward on average −135 Hz. In addition, the tables report the
SDs across subjects for the differences between average test
and pretest trials. Variability in the absolute estimates of F1
and F2 for /!/ was also large across trials within each sub-
ject. For each subject, SDs of the formant estimates were
calculated separately for test and pretest trials. These SDs
were then averaged across subjects for both manipulation
directions, resulting in an F1 SD=38 Hz, and an F2 SD
=53 Hz.

For F1, a two-way ANOVA #time block !sequential
blocks of 150 ms, numbered one to eight", and direction of
F1 perturbation !upward versus downward"$ showed signifi-
cant main effects of the block number #F!2.8,71.7"=3.1, p
"0.04$, and manipulation direction #F!1,26"=22.2, p
"0.001$. There was also a significant interaction between
these two factors #F!2.8,71.7"=27.5, p"0.001$. For F2, the
same ANOVA did not quite show a significant main effect of
the manipulation direction #F!1,24"=3.8, p"0.062$, but had
a significant interaction between the direction and block
number #F!2.8,68"=4.3, p"0.01$. The interactions between
the block number and manipulation direction are because the
changes with block number are either negative or positive
depending on the manipulation direction. Both manipulation
directions had one subject without valid F2 estimates, so the
degrees of freedom were lower than in the F1 ANOVA.

For each stimulus condition and formant number, Schef-
fé’s method was used to evaluate whether the test-pretest
differences of block one were different from the other blocks
two through eight !given in Tables I and II". For the experi-

FIG. 2. The F1 formant difference responses are shown for grand averages
across subjects !thick black lines" with 1 SD bounds !grey area". These
curves are the F1 differences between the test and pretest trials of /!/ plotted
against time with respect to the perturbation onset at 0 s. Panel !a" shows the
responses of 16 subjects where F1 was shifted upward toward /æ/. Panel !b"
shows the responses of 12 subjects, where F1 was shifted downward to-
wards /I/. The horizontal dotted lines at zero mark no difference between test
and pretest trials. The widely spaced dashed vertical lines at 0 s mark the
time when altered auditory feedback began linearly cross-fading into the
headphones over 0.5 s. The narrowly spaced dash vertical lines mark the
change points where a significant change was first detected in the grand
average F1 difference curve. For panels !a" and !b", the change points oc-
curred at 0.454 and 0.415 s, respectively.

TABLE I. Grand average block means and standard deviations !SDs" across subjects of the difference between
test and pretest trials for stimulus condition A, where F1 was manipulated upward 100% toward /æ/. Blocks are
sequential windows of 150 ms. Time zero was chosen as the time when the manipulation commenced, so Block
1 shows the mean formants prior to the response. Percent compensation and percent change were with respect
to the group average F1 manipulation of +136 Hz. One subject did not have valid F2 estimates and is not
included in the F2 summary.

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8

Block center re
manipulation start !s"

−0.025 0.125 0.275 0.425 0.575 0.725 0.875 1.025

Formant F1
Mean F1test−F1pretest !Hz" −1.4 −1.8 −2.5 −7.6 −12.7 −16.9 −22.2 −21.5
SD F1test−F1pretest !Hz" 10.2 8.9 10.1 11.7 15.0 16.1 17.3 14.8
% F1 compensation 1.0 1.3 1.8 5.6 9.4 12.4 16.3 15.8

Formant F2
Mean F2test−F2pretest !Hz" 4.2 5.7 2.7 5.0 4.5 8.8 10.7 11.7
SD F2test−F2pretest !Hz" 11.9 15.4 12.5 14.6 16.1 16.1 20.7 22.6
% F2 change 3.1 4.2 2.0 3.7 3.3 6.5 7.9 8.6
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Model architecture Simulation results Future directions 
How to predict sensory and articulatory states? 

Currently, auditory predictions are learned via Locally 
Weighted Projection Regression [9] from a training set of 
noiseless vowel sweep data. Articulatory predictions are 
calculated from the differential equations that drive articulator 
motion in CASY. 
 

How to estimate state from internal prediction and 
observation? 

We have implemented versions with both an Extended 
Kalman Filter and an Unscented Kalman Filter. We are 
evaluating the behavior of both models. In either model, we 
are exploring if the Kalman gain (K) be fixed or free to vary. 
 

How to integrate auditory and somatosensory feedback? 
It is unclear whether auditory and somatosensory information 
are integrated into a single state estimate for low-level 
articulatory control as currently implemented. Alternatively, 
low-level control could rely on somatosensory feedback 
while auditory feedback is used for task-level control [10]. 

 

How to incorporate neural delays? 
We are working to extend the state to include past time 
points, which has been used successfully to account for 
neural delays in non-speech models [11]. 
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