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Abstract
We present a computational model of speech motor control that
integrates vocal tract state prediction with sensory feedback.
This hierarchical model, called FACTS, incorporates both a
high-level and low-level controller. The high-level controller
orchestrates linguistically-relevant speech tasks, which are rep-
resented as desired constrictions along the vocal tract (e.g., clo-
sure of the lips). The output of the high-level controller is
passed to a low-level controller that can issue motor commands
at the level of the speech articulators in order to accomplish
the desired constrictions. In order to generate these articulatory
motor commands, the low-level articulatory controller relies on
an estimate of the current state of the vocal tract. This estimate
combines internal predictions about the consequences of issued
motor commands with auditory and somatosensory feedback
from the vocal tract using an Unscented Kalman Filter based
state estimation method. FACTS is able to reproduce several
important aspects of human speech behavior such as: (i) sta-
ble speech behavior in the presence of noisy motor and sensory
systems, (ii) partial acoustic compensation to auditory feed-
back perturbations, (iii) complete compensations to mechanical
perturbations only when they interfere with current production
goals, and (iv) the observed relationship between sensory acuity
and response to sensory perturbations.
Index Terms: speech motor control, auditory feedback, task
dynamics, state feedback control, feedback perturbation, speech
production, speech modeling

1. Feedback and Speech Motor Control
Sensory feedback is important for speech motor control. Mul-
tiple research studies have shown that speakers compensate for
perturbations to auditory and/or somatosensory feedback [1, 2],
and that delayed auditory feedback disrupts the production of
fluent speech [3, 4]. However, one intriguing aspect of the
speech production process is that while it is responsive to audi-
tory and somatosensory feedback, it is not critically dependent
on it. We know this because post-lingually deafened adults can
produce intelligible speech [5]. In addition, speech is highly
intelligible during oral sensory and auditory deprivation, even
though articulatory precision is affected [6]. Models of speech
motor control therefore need to account for the effects of sen-
sory feedback on the articulation process, without critically re-
lying on it.
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A number of speech motor control models have been pro-
posed in recent years, including (among others) the DIVA
model [7], Task Dynamics [8], and State Feedback Control or
SFC [9]. While both SFC and Task Dynamics have evolved
out of a general feedback controller, Task Dynamics has at its
heart a controller that generates state-dependent motor com-
mands that drive changes in the speech articulators [8, 10],
while assuming that the instantaneous state of the speech pro-
duction system can be known without error. SFC models how
the CNS can estimate the state of the speech production system
from noisy, delayed feedback signals [11] using optimal control
principles [12], but does not model how that state can be used
by the controller to generate motor commands. More recently,
we proposed a novel speech production model – TD-SFC [13]
– that overcomes the individual disadvantages of each model by
composing a neurobiologically inspired short-latency feedback
control scheme (derived from State Feedback Control) with the
well-developed method for deriving utterance-specific control
laws and generating the resulting articulatory and acoustic out-
comes (derived from Task Dynamics).

In this paper, we present a more robust and updated version
of that model, which we dub FACTS (Feedback-Aware Control
of Tasks in Speech). We show that the FACTS model can repro-
duce several important aspects of human speech behavior.

2. Modeling
2.1. Task Dynamics Modeling Preliminaries

The Task Dynamics Application (or TaDA) model [14, 15, 10]
implements the Task Dynamic model of inter-articulator speech
coordination with the framework of Articulatory Phonology
[16]. Based on any arbitrary orthographic (ARPABET) input,
TaDA uses a feedback control schema to control a configurable
articulatory speech synthesizer [17, 18], generating both ar-
ticulatory and acoustic output. In TaDA, articulatory control
and functional coordination of the speech articulators is accom-
plished with reference to speech ‘tasks’ which are coordinated
together in time. Speech tasks, or ‘gestures’, are taken to be
constriction actions of the vocal tract (e.g., close the lips), with
specific spatial targets and temporal extents. Each gesture con-
trols multiple speech articulators that are used coordinatively to
achieve that particular task (e.g., the upper lip, low lip, and jaw
move together to close the lips) [16]. Each gesture is modeled
as as a point attractor with second-order mass-spring dynamics,
which when active forms part of the multi-dimensional control
law that governs how the vocal tract changes through time. This
time-varying control law, unique to each utterance, is known as
a gestural score.
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Figure 1: The proposed FACTS model. This model includes a
controller and vocal tract model from TaDA (in blue) and an
implementation of SFC-style state estimation (in red). The ob-
server, implemented as a UKF, includes predictive components
(green arrows) and mechanisms to correct predictions based on
sensory feedback (red arrows).

However, as in any motor control scheme, we cannot di-
rectly control these task variables. Rather, we control the lower
level articulators (or, at a level not modeled here, muscles or
motor neurons). As such, TaDA generates changes in the posi-
tions of the organs of the model vocal tract (articulatory vari-
ables, a) which can be nonlinearly related to the task variables
using the so-called ‘direct kinematics’ relationship.

2.2. FACTS model

This section extends an earlier version of a task-based state
feedback control model [13], TD-SFC (Task Dynamics-State
Feedback Control). A schematic control diagram of our current
model is shown in Figure 1. The dashed blue boxes replicate
the current Task Dynamics model [8]. This model contains 1)
a controller, 2) a model vocal tract or plant that receives a mo-
tor command from the controller and produces changes in the
articulatory state, and 3) a model to generate acoustic output
from time-varying articulatory trajectories. Here we represent
the state of the vocal tract tasks xt = [xt ẋt]

T at time t by a set
of constriction task variables xt and their velocities ẋt. Given
a gestural score generated using a linguistic gestural model as
described earlier, the Forward Task Dynamics model allows us
to compute the state derivative ẋt as follows:[

ẋt
ẍt

]
=

[
0 1
−K
M

−B
M

] [
xt
ẋt

]
+

[
0
c
M

]
(1)

where x refers to the task variable (or goal variable) vector,
which is defined in TaDA as a set of constriction degrees (such
as lip aperture, tongue tip constriction degree, velic aperture,
etc.) or locations (such as tongue tip constriction location). M
is the mass matrix, B is the damping coefficient matrix, K is
the stiffness coefficient matrix of the second-order dynamical
system model, and c is a constant.

Next we use Equation 2 (after [8]) to perform an inverse
kinematics mapping from the task accelerations ẍt to the model
articulator accelerations ät, a process which is also dependent
on the current estimate of the articulator positions ˜̇at and ve-
locities ˜̈at. J is the Jacobian matrix of the forward kinematics
model relating articulatory states to task states.

x = f(a) (2a)

ẋ = J(a)ȧ (2b)

ẍ = J(a)ä+ J̇(a, ȧ)ȧ (2c)

Euler integration allows us to compute the model articu-
lator positions and velocities for the next time-step, which ef-
fectively “moves” the articulatory vocal tract model. Then, an
appropriate synthesis model converts the model articulator and
constriction task values into output acoustic parameters yt.

While Task Dynamics assumes perfect observability and
feedback of the current vocal tract state at every iteration of the
model (represented by the dotted blue arrow in Figure 1), which
is unrealistic for the human CNS given the variety of reasons
discussed above. We implement a state-estimation procedure
(Section 2.3, below), to estimate the articulatory state from an
efference copy of the motor commands issued to the plant and
sensory feedback.

This articulatory state estimate is passed back to the articu-
latory feedback controller and used to estimate the current state
of the speech tasks x̃t. This task state estimate is calculated by
running the forward kinematics model f (see Equation 2) based
on the estimate of articulatory state ãt, and the output of this
process is passed to the task feedback controller.

2.3. State estimation

The basic concept of SFC is that a copy of the motor command
(“efference copy”) is passed to an internal model of the vocal
tract. Based on this efference copy, the internal model generates
1) an estimate of the next state of the speech articulators and 2)
an estimate of the sensory consequences of the estimated state.

In FACTS, this forward modeling of articulatory state and
sensory consequences is accomplished through an Unscented
Kalman Filter (UKF) [19]. The UKF is an extension of the prin-
ciples of the Kalman Filter to nonlinear systems that has been
shown to be more stable and accurate than the method we previ-
ously emplyed [13], the Extended Kalman Filter [20]. In order
to generate a posterior mean and covariance, the EKF approxi-
mates a non-linear transformation function and projects a single
prior throught that linearized function. However, the approxi-
mations in this process can sometimes lead to sub-optimal per-
formance. In a UKF, multiple prior points (called sigma points,
X ) are used. These prior points are chosen carefully to cap-
ture the mean and covariance of the prior state. Each of these
points is then projected through the true un-transformed non-
linear function, after which the posterior mean and covariance
can be calculated from the transformed points. This process is
called the unscented transform. This is used both to predict the
future state of the system (process model) as well as the ex-
pected sensory feedback (observation model). The means and
covariances calculated through these unscented transforms are
then used analogously to their use in a standard Kalman Filter
to estimate the optimal posterior state.

In our model, the output of the inverse kinematics model
(ät, which is equivalent to the motor command) is passed to the
observer/UKF. This is combined with an estimate of the current
articulatory state at−1 = [at−1 ȧt−1]

T to generate an articula-
tory state prediction. First, the sigma points (X ) are generated:

Xt−1 = [̂st−1 ±
√

(L+ λ)Pt−1] (3)

where ŝt−1 = [aT
t−1vT

t−1nT
t−1]

T), and v and n are the process
and observation noise, respectively, L is the dimension of the
dimension of the articulatory state a, λ is a scaling factor, and
P is the noise covariance of a, v, and n.

The observer then estimates how the motor command ät
would effect the speech articulators by replicating using the



Euler integration model (F) to generate the state prediction
ât = [ât ˆ̇at]

T . First, all sigma points reflecting the articula-
tory state X a and process noise X v are passed through F :

X a
t|t−1 = F [X a

t−1, ät−1,X v
t−1] (4)

and the estimated articulatory state is calculated as the weighted
sum of the sigma points where the weights (W ) are inversely
related to the distance of the sigma point from the center of the
distribution.

ât =

2L∑
i=0

Wi X a
i,t|t−1 (5)

The expected sensory state (ŷt) is then derived based on the
predicted articulatory state in a similar manner, first by project-
ing the articulatory X a and observation noise Xn sigma points
through the articulatory-to-sensory transformH.

Yt|t−1 = H (X a
t|t−1,Xn

t−1) (6)

ŷt =

2L∑
i=0

Wi Yi,t|t−1 (7)

In the current version of the model, the sensory state (yt) in-
cludes both auditory feedback (yaud

t ) as well as somatosensory
feedback (ysomat

t ), which has been show to play a role in in-
forming the state of the system [21]. Acoustic feedback is im-
plemented as the values, in Hz, of the first three vowel formants
(F1-F3). Somatosensory feedback is implemented as the po-
sitions and the velocities of the oral articulators in the CASY
synthesizer.

This estimate of the sensory state is then compared against
incoming sensory feedback (y) to adjust the predicted articula-
tory state. To model sensory noise, Gaussian white noise (ω) is
added to the formant values and articulator positions and veloc-
ities produced by the CASY with separate standard deviations
for auditory and somatosensory signals . The updated state es-
timate ãt in this case is given by:

ãt = ât +Kt(yt − ŷt) (8)
where ∆y = yt− ŷt is the sensory error andKt is the Kalman
Gain, which is computed as a function of the posterior covari-
ance matrices Pxtyt and Pytyt in the following manner:

Kt = PxtytP
−1
ytyt

(9)

Pxtyt =

2L∑
i=0

Wi[Xi,t|t−1 − ât][Yi,t|t−1 − ŷt]
T (10)

Pytyt =

2L∑
i=0

Wi[Yi,t|t−1 − ŷt][Yi,t|t−1 − ŷt]
T (11)

One of the challenges in implementing such an UKF is that both
the process model F (that provides a functional mapping from
[at−1 ȧt−1 ät−1]

T to ât) as well as the observation model H
(that maps from at to yt) are unknown. Currently, we im-
plement the process model F by replicating the Euler inte-
gration equations used to drive changes in the CASY model.
Implementing the observation model is more challenging due
to the nonlinear relationship between articulator positions and
formant values. In order to solve this problem, we learn the
observation model functional mappings from articulatory po-
sitions to acoustics (yaudt = H(ât))required for Unscented
Kalman Filtering using Locally Weighted Projection Regres-
sion, or LWPR, a computationally efficient machine learning
technique [22]. While we do not here explicitly relate this ma-
chine learning process to human learning, such maps could the-
oretically be learned during early speech acquisition, such as
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Figure 2: Predicted F1 produced by running the LWPR model
of the articulatory-to-sensory transform and visualizing it in
the 2D plane of F1–Tongue Condyle Length (CL). We also plot
Gaussians corresponding to the mean and variance of all LWPR
receptive fields (below a certain variance threshold) to illustrate
how LWPR models different regions of the CL space.

babbling [7]. Currently, we learn only the auditory prediction
component of H. Since the dimensions of the somatosensory
prediction are identical to those of the predicted articulatory
state, the former are generated from the latter via an identity
function (ysomat

t = ât).

2.4. Model training

We used the TaDA model [15] (which given our current use of
many of that model’s components, is essentially equivalent to
the current FACTS model without the SFC component) to gen-
erate a set of 2938 vowel sweeps covering the extent possible
of tongue body movements. Half of these productions started
at the neutral tongue position for the vowel [@] and moved the
tongue body to some other location in the vocal tract. The range
of end positions covered the full extent of allowable tongue
body positions in the model. The other half of the productions
reversed these starting and ending points.

We then extracted 20-dimensional articulatory variable tra-
jectories(corresponding to the positions (a) and velocities (ȧ) of
the oral articulators in the CASY model [18]), 10-dimensional
articulatory control signals issued to the plant (ä) and 3-
dimensional acoustic variable trajectories (corresponding to the
first three formants, F1 - F3) from this dataset, and used this to
train the mappings for the process and observation model using
LWPR. Figure 2 shows an example of predicted v.s actual F1
(in red and blue, respectively), for different values of one par-
ticular dimension of the articulatory parameter, “tongue condyle
length” (CL). We also plot, in gray, Gaussians that are represen-
tative of the mean and variance of the learned LWPR receptive
fields (visualized in this 2D plane) that are used to make the
predictions. Notice that the predicted F1 pretty closely matches
the actual F1, particularly towards the upper end of the range of
CL values.

3. Simulation Experiments
3.1. Stability of the model with sensory noise

One of the key factors that contribute to the instability of sys-
tems that rely purely on feedback control is the presence of
noise in the sensory processes that monitor the motor output
of those systems. In humans, the auditory and somatosensory
feedback pathways, like all neural signals, are corrupted by
some amount of noise [23]. Given the role feedback pathways
play in the FACTS model, test the effects of sensory noise on
stability by simulating production of [@], varying the standard
deviation of the additive sensory noise in the auditory and so-
matosensory feedback signals between 1% and 50% of the ob-
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Figure 3: Example runs of the FACTS model with different de-
grees of additive sensory noise. Note the feedback is barely
visible in the left figure due to the low amount of noise.

Figure 4: An example simulation run of the FACTS model with
altered auditory feedback. A perturbation of +100 Hz is applied
to F1 during the shaded time period.

served ranges in our training data. As shown in Figure 3, the
model is able to produce stable output (though with some run-
to-run variability) regardless of the amount of sensory noise,
due to the state prediction component of the UKF (only end-
points shown).

3.2. Response of model to altered feedback

While the speech motor system can operate independently of
sensory feedback, there is strong evidence that the system
does use acoustic feedback, when available, to control ongo-
ing speech production [24, 25, 26]. When subjects’ speech for-
mants are perturbed they compensate by shifting their own for-
mants in the opposite direction (e.g. a positive shift in F1 played
back to the subject induces a negative F1 shift in the subject’s
production). In order to evaluate the ability of the FACTS model
to reproduce this compensatory response to auditory perturba-
tions, we simulated a simple altered auditory feedback experi-
ment: we perturbed F1 of the vocal tract acoustic output yaudt

by 100 Hz while the model was producing [@].
Figure 4 shows the results of one example simulation run

of the FACTS model under F1 perturbation. The model initially
starts with veridical (though noisy) feedback. At the onset of
the shaded region, the perturbation is turned on. This causes
a discrepancy between the perceived auditory feedback and the
auditory predictions generated by the UKF. In response to this
feedback error, the produced F1 lowers below the baseline value
of 520 Hz, though not enough to fully compensate for the 100
Hz perturbation. This partial compensation qualitatively repli-
cates human behavior in previous studies on altered auditory
feedback perturbations. Critically, FACTS is able to replicated
the compensatory behavior seen in response to auditory pertur-
bations despite the absence of any explicit auditory goals in the
model.

3.3. Consequences of sensory acuity

While the simulations in Section 3.1 showed that FACTS is sta-
ble in the presence of noise, the amount of noise in the sensory
input does influence model behavior. Specifically, more noise
for a given sensory channel results in a a smaller weight in the
Kalman gain for that channel. This can be seen when an +100
Hz perturbation is applied to the auditory feedback in the model

Figure 5: Four simulation run of the FACTS model with altered
auditory feedback and varying sensory noise. A perturbation
of +100 Hz is applied to F1 during the shaded time period. A
larger response is produced when auditory noise is low or when
somatonsensory noise is high.
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Figure 6: Simulation run of the FACTS model with a mechanical
pertubation applied to the jaw.
(Figure 5). More noise results in a smaller compensatory re-
sponse. This simulation result mirrors behavioral findings that
speakers who produce smaller compensatory responses to audi-
tory perturbations have less acute auditory systems [27]. The
opposite change is observed when somatosensory noise is ma-
nipulated: a lower somatosensory noise results in a smaller
compensatory response. This suggests a trading relationship
between audiotory and somatosensory acuity, consistent with
a similar trade-off in auditory vs somatosensory compensation
in human behavior [28].

3.4. Responses to mechanical perturbations

When mechanical perturbations are applied to the jaw during
a consonant closure, other articulators move to compensate for
the lowered jaw position. The response of these articulators de-
pends on the current production goal [29]. For example, the
upper lip will lower in response to a jaw perturbation during /p/
but not /f/ [30]. We replicated these experiments by applying a
downward force to the model jaw. FACTS qualitatively repli-
cates human behavior, as seen in Figure 6. The upper and lower
lip move to a compensate for the lower jaw only when needed
to produce a bilabial /p/ (left), but not when producing a coronal
/t/ (right).

4. Summary
We have elaborated the computational architecture of a new
model of speech production, FACTS. We have shown that this
model, though still under development, is capable of produc-
ing speech in the presence of sensory noise or even complete
absence of sensory feedback, yet is able to use sensory infor-
mation to correct for auditory and mechanical perturbations,
producing corrective responses that qualitatively match human
behavior.
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