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This paper reviews the current state of several formal models of speech motor control, with particu-

lar focus on the low-level control of the speech articulators. Further development of speech motor

control models may be aided by a comparison of model attributes. The review builds an under-

standing of existing models from first principles, before moving into a discussion of several models,

showing how each is constructed out of the same basic domain-general ideas and components—

e.g., generalized feedforward, feedback, and model predictive components. This approach allows

for direct comparisons to be made in terms of where the models differ, and their points of agree-

ment. Substantial differences among models can be observed in their use of feedforward control,

process of estimating system state, and method of incorporating feedback signals into control.

However, many commonalities exist among the models in terms of their reliance on higher-level

motor planning, use of feedback signals, lack of time-variant adaptation, and focus on kinematic

aspects of control and biomechanics. Ongoing research bridging hybrid feedforward/feedback path-

ways with forward dynamic control, as well as feedback/internal model-based state estimation, is

discussed. VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5092807

[JFL] Pages: 1456–1481

I. INTRODUCTION

Several formal models of speech motor control have

been formulated and presented in the speech production lit-

erature. Based on decades of observation, it seems clear that

the mechanisms of speech motor control are complex, and

consequently benefit from the detailed and rigorous descrip-

tion that formal, mathematical models can provide. Speech

motor control is, indeed, one of the most intricate sensorimo-

tor activities in which humans engage. Producing speech

requires fine timing and coordination of muscles that are

interwoven, redundant and have complex mechanical prop-

erties, in order to move the diverse articulatory structures of

the tongue, lips, jaw, velum, and larynx into a wide range of

configurations, all of which have a nonlinear relationship

with the vocal tract’s acoustic output. Control mechanisms

are additionally modulated by higher-level processes that

determine motor planning, and also mediate semantic, syn-

tactic, prosodic, and phonological organization. The various

aspects of speech motor control can be conceptualized as

layered modules (see Fig. 1). In such a layered description,

the bridge between higher-level planning processes and the

movements of the biomechanical speech-producing struc-

tures is a layer which produces motor commands that drive

kinematics given some motor plan and potentially in light of

some monitoring or prediction of action. The central role

filled by this layer—hereafter, simply referred to as the con-
trol layer—has ensured that all formal models of sensorimo-

tor control for speech have defined architectures that govern

its functionality. The field of models that have provided a

formal description of the control layer comprises Directions

Into Velocities of Articulators (DIVA) model (Guenther,

1994, 2016), Task Dynamics (TD) (Saltzman and Kelso,

1987; Saltzman and Munhall, 1989), State Feedback Control

(SFC) (Houde and Nagarajan, 2011), ACTion-based model

of speech production, speech perception, and speech

acquisition (ACT) (Kr€oger et al., 2009), Gestures Shaped

by the Physics and by a Perceptually Oriented Targets

Optimization (GEPPETO) (Perrier et al., 2006), and

Feedback Aware Control of Tasks in Speech (FACTS)

model (Parrell et al., 2019).

An impediment to progress in developing rigorous speech

motor control models appears to be the variety of distinct

approaches, taken in the published literature, to explaining

the attributes of the more prominent models of speech motor

control. There is very little agreement, for instance, even

concerning the terminology used to describe the models.

Nevertheless, there is reason to believe that a direct compari-

son of speech control models is possible, based on the impor-

tant, high-level observation that the models presented in the

literature are all closely related to engineering approaches to

motor control, and bear a strong resemblance to classical

control-theoretic architectures. Given that the theory behind

current understanding of biological motor control largely

grew out of early advances in engineering fields (Bellman,

1957; Wiener, 1948), it is perhaps unsurprising that the same

is true specifically in the area of speech motor control. Indeed,

engineering approaches are a sensible place to begin investi-

gations into the nature of speech motor control, in part

because our current understanding of the functionala)Electronic mail: Adam.Lammert@LL.mit.edu
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interpretation of motor control neuroanatomy follows the

engineering architectures closely [consider, e.g., Brainard and

Doupe (2002); Shadmehr and Krakauer (2008); Takakusaki

(2017); Wolpert et al. (1998)].

Progress in the development of speech motor control

models may be facilitated by a direct comparison of the vari-

ous models, using a common framework of domain-general

(i.e., not speech-specific) motor control principles and uni-

fied terminology to describe their attributes. The purpose of

the present paper is to provide such a direct comparison for

models of the control layer that utilize mechanisms to move

the plant in support of accomplishing speech tasks in accor-

dance with higher-level speech goals. These models have

been developed to attempt meaningful reproduction of

speech behavior, including potentially acoustics, articula-

tory, and neural signals. Demonstrations of the ability of

these models to capture aspects of human speech production

kinematics have been presented in the literature, and the

extent and quality of these efforts may differ by model. No

systematic review will be offered here of experimental data,

either behavioral or neurological, that has been or could be

used to support the expressivity or biological plausibility of

any model. However, a brief summary of the demonstrated

capabilities of each model is included. This choice reflects

an intention to focus on the model architectures themselves.

Our review begins with general motor control principles

and approaches, before moving into basic, domain-general

models of motor control. The paper then proceeds to provide

detailed discussions of currently proposed models of speech

motor control, showing how each model is constructed out of

these basic domain-general ideas and components. By show-

ing how each model is built up on these basic elements, this

approach allows for a clear comparison between the proposed

models, showing where they differ as well as points of agree-

ment. The present review focuses specifically on control of

the speech articulators in fully developed, adult speech.

Control that is adaptive (i.e., time variant), which may be rele-

vant for speech acquisition and development, will only be

considered in the discussion, and not in the primary overview

framework. Formal explanations, including an appendix with

full equations for each model, is provided where possible.

Other important aspects of speech production, including

learning and optimization, higher-level linguistic processing,

motor program generation (i.e., the “planner”), the neurologi-

cal basis of hypothesized model components, and biomechan-

ical details of the speech articulators (i.e., the “plant”) will

only be discussed to the extent necessary to clarify the nature

and operation of the proposed control mechanisms.

II. BACKGROUND

A. Motor control principles and terminology

The first step in discussing speech motor control models

is to define certain key concepts and terminology. To illus-

trate these ideas, a simple example is borrowed from the

control of upper extremity reaching control, as shown in

Figs. 2 and 3, which is based on the description of a simple

two-link robotic arm moving on a planar surface. This com-

monly used example, though taken from a completely differ-

ent domain of motor control, shares many of the same

concepts and terminology with speech motor control, and

has the benefit of being low-dimensional, which makes it

possible to represent the relevant spaces in a two-

dimensional plot. Fundamental similarities and distinctions

between this simple example and the (considerably more

complex) speech production system, in terms of their

assumptions and structure, will be drawn where appropriate

throughout the present section.

The robotic arm, as a physical structure, is the apparatus

to be controlled, and can be referred to as the plant (G). Note

that the term plant is not specific to this example, and could

be used in the domain of speech production to specify the

vocal tract and its component articulators, as well as possibly

the larynx and the respiratory system. The plant’s two links

are connected to each other at a revolute joint that changes

the angle between the links, u2. The proximal end of the

robot’s first link is fixed at the origin of the planar surface,

defined as (x1, x2)¼ (0, 0), but is free to rotate about this

point which changes the angle u1. These two variables, u1

and u2 describe the configuration of the plant, and also define

FIG. 1. (Color online) Representation of the distinct levels of speech pro-

duction modeling. This paper focuses on modeling the speech controller, the

system that takes in a speech plan and potentially feedback from the plant

and issues motor commands to the plant. Other components of the speech

production hierarchy include higher level linguistic processes (prosody,

semantics, syntax), the planner (low level sequencing of motor actions), and

the plant itself (e.g., speech synthesizers including but not limited to articu-

latory synthesizers such as CASY, Birkholz, or Maeda).
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the set of possible configurations of the plant, known as

mobility space.1 The variables u1 and u2 can be considered

as elements of a single 1 – by – 2 vector, u, which can be

said to specify the state of the plant in mobility space (some-

times, the mobility state).

The distal end of the second link (i.e., the “hand”) is

considered the end-effector of the robot, the precise position-

ing of which is typically the focus of controlling the plant in

the context of reaching tasks. The variables x1 and x2,

already used to define locations on the planar surface, can

FIG. 2. (Left panel) Robot arm in its initial configuration at (x1, x2) in task space, and the final goal (red circle). The arm’s state variables (u1, u2) are defined

as the angles of the shoulder and elbow. (u1, u2) are the parameters directly changed by the controller and therefore exist in mobility space. (Middle panel) The

trajectory in mobility space. The evolution of the mobility space variables (u1, u2) over time may be a non-linear trajectory despite a linear trajectory in task

space. (Right panel) The final orientation of the arm in task space at the goal.

FIG. 3. Illustration of the difference between feedforward (top row), feedback (middle row), and model predictive (bottom row) control using a simple reach-

ing example. In feedforward control, the arm traces out a fully preplanned trajectory with no feedback about the position of the arm at any point in time. In

feedback control, an error is computed between an observed state of the system (observation represented by the eye) and the target. The arm progressively

works to minimize this error which drives the end effector towards the target. In model predictive control, an error is computed internally as opposed to being

derived from feedback of the state of the system (represented by the brain with an internal model of the robot arm). The arm’s position is updated to minimize

the predicted error of the system.
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also be used to describe the location of the end-effector on

that surface. The space of possible locations for the end-

effector is known as task space, and the desired outcome of

a controlled movement is known as a task. The variables x1

and x2 can be considered as elements of a single 1 – by – 2

vector, x, specifying the state of the plant in task space

(sometimes, the task state). Tasks with respect to the robotic

arm might be putting the end-effector as a specified location

in task space (i.e., achieving a state where x takes on a par-

ticular value), or alternatively achieving a specific trajectory

through task space (i.e., tracking some sequence of values

for x). In speech production, task spaces might include, for

instance, formant space or vocal tract constriction degree/

location space.

Task and mobility spaces can be viewed as “high” and

“low” level spaces, respectively, with the variables compris-

ing each space having a hierarchical arrangement where the

task variables are composed of, but distinct from, mobility

variables. Often this arrangement is many-to-one, such that

many different (or, potentially infinite) locations in mobility

space will map to the same location in task space. Task vari-

ables consequently describe the state of the plant in a way

that is directly relevant to the task, and which abstracts away

from a certain amount of detail as to how that task state was

achieved via some mobility state. Mobility variables

describe the state of the plant in a way that is more relevant

to control, in the sense that motor commands are typically

defined so as to affect some change in mobility state. Using

the robotic arm example, motor commands would typically

be given in terms of the joint angles, and not in terms of the

end-effector position. In a speech context, a model might

assert that motor commands are issued in terms of the posi-

tions of the speech articulators (e.g., upper lip, lower lip,

tongue tip, etc.), and not in terms of some desired formant

values (e.g., F1¼ 500 Hz) or vocal tract constrictions (e.g.,

lip aperture¼ 2 mm).

The details of the task are specified in the reference, r, a

vector representing a desired state. The reference vector typ-

ically resides in task space (rx), but may also be given in

mobility space (ru) for specific applications. Reference vec-

tors originate in the planner (P), and may be part of a larger

motor program maintained by the planner, toward achieving

some higher-level sensorimotor or cognitive goal (e.g., reach

to a series of targets in space, utter the word “dad”). As

implied above, however, reference vectors will typically be

insufficient for use directly as motor commands to the plant

because they reside in task space. The reference will need to

be transformed into a motor command in mobility space.

This is the function of the controller.

The controller (C) is the bridge between the planner and

any feedback, on the one hand, and movements of the plant,

on the other. The ultimate purpose of the controller is to

issue motor commands that produce movement (or lack

thereof) in the plant. Note that the present paper assumes

that motor commands take the form of vectors in mobility

space, u, and that those vectors can be used directly as com-

mands to the plant. In a real biological system, several trans-

formations may be required for encoding motor commands

as neural signals, and to elicit muscle activations that bring

about changes in mobility state. This assumption is made to

promote consistency with the speech motor control modeling

literature, and for the sake of simplicity. In any case, the

motor command issued by the controller will depend either

upon the reference directly, or upon the state error, e, a vec-

tor representing the difference between the reference and the

plant’s state (or an estimate of that state, see below).

In biological systems, the plant’s actual state may not

always be directly accessible to the controller. It can be

therefore important to develop the notion of a state estimate
(x̂ or û), which is an internal estimate of the plant’s state,

either in task space or in mobility space. The state estimate

may be informed by sensory measurements of the plant’s

actual state—represented by the sensory state vector y—and

by predictions generated from an internal model of the

plant—represented by the predicted state vector ~x or ~u. The

sensory state vector, an approximation to either x or u, may

be corrupted by some combination of noise (e.g., neuronal

noise), delays (e.g., slowed synaptic/axonal propagation), or

transformations (e.g., warping). The predicted state vector

may also be imperfect, since the internal model may be inac-

curate or biased. For the robotic arm example, the sensory

state vector would represent a combination of measured joint

angles (yu) and vision-derived measurements of the end-

effector position (yvis). This contrasts with the sensory output

for speech production, which is typically considered to be a

combination of auditory (yaud) and somatosensory signals

(ysomat), where the somatosensory signal may include propri-

oceptive and/or tactile sensation.

In general, motor control can be viewed as a collection of

transformations between vectors and spaces of different types,

and the planner, the controller, and the plant can all be

described—using the conventions developed above—as func-

tional transformations from specific inputs to specific outputs.

The planner generates the reference vector, r¼P(a) as a func-

tion of some high-level motor program-related information a,

and possibly as a function of time: r¼P(a, t). The controller

takes a reference vector or an error vector as input and gener-

ates a motor command in mobility space: ðu; _uÞ ¼ CðrÞ or

ðu; _uÞ ¼ CðeÞ. The plant, which can also be viewed as a trans-

formation, converts motor commands, through movement,

into different plant states which can be measured in both

mobility and task space: ðu; _u; x; _xÞ ¼ Gðu; _uÞ. These varia-

bles are used in Fig. 4, and in related diagrams throughout the

paper. The state of the plant can then be measured by some

sensory system: ðy; _yÞ ¼ Sðu; _u; x; _xÞ, the details of which are

often not explicitly treated in the literature. Therefore, the pre-

sent review will often lump G and S together into a single

component.

B. Types of motor control models

The purpose of this section is to lay out, in a general

way, some common control architectures that are employed

in various control applications, including both controlling

robotic systems as well as describing the functional aspects

of physiological control. These general architectures are pre-

sented as a scaffold for understanding the specific architec-

tures used in various speech motor control models, and also
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for the purpose of clarifying the terms used in the present

paper to refer to those architectures. To illustrate these vari-

ous architectures in an intuitive way, the example of the pla-

nar robotic arm will continue to be employed as in Sec. II A.

However, these same architectures can be used to control

much more complex systems, such as the speech production

system.

1. Feedback control

Figure 4(b) shows an example of a feedback system

architecture that, by definition of the term, makes use of out-

puts from the plant for maintaining control. These feedback

signals, which convey the sensory state vector, are compared

with the reference vector from the planner in order to gener-

ate an error vector. The error vector, in its most basic form,

simply represents the difference between the current state

and the reference. The error vector is passed to the controller

for determining the motor command. This type of controller

is often referred to as a closed-loop controller in the control

theory literature, since the flow of signals through the system

form a loop from the motor command to the error signal and

back again. Many types of controllers exist which match this

general description, only a few of which will be discussed

here. What all feedback controllers share is the basic idea

that the error between the state of the plant (or an estimate

thereof) and the reference forms the basis for the motor com-

mand issued to the plant. The simplest feedback controller

design is the proportional controller, in which the motor

command is simply proportional to the error signal—e.g.,

CðexÞ ¼ Kpex, where the term Kp is a matrix of weights

known as the gains. Larger gains lead to larger motor com-

mands (i.e., the error has more of an effect on the system)

while smaller gains result in smaller commands. Smaller

gains are often preferable as large gains can lead to instabil-

ity and oscillatory behavior.

The second row in Fig. 3 shows, across times t1, t2, and

t3, the progress of the robotic arm as controlled by a feed-

back controller. At the beginning, the task is defined as a

desired point in task space x¼ (x1, x2). This type of task is

sometimes referred to as a point-attractor, or a target, since

the system should evolve to approach this point in task space

regardless of its initial position, given sensible motor com-

mands that reduce the error signal over time. The motor

commands issued at each time step are a function of the

error, ex, between the current position of the end-effector

and the point target. The error is determined by sensory feed-

back, which provides monitoring of the current state of the

arm with respect to the position of the target.2 Although the

error signal is in task space, the motor command issued by

the controller must be given in mobility space since the only

way to change the position of the end effector is to change

the joint angles u¼ (u1, u2). The process of determining

those commands requires some kind of transformation (i.e.,

kinematic inversion) from the desired coordinates in task

space to corresponding coordinates in mobility space.

Alternatively, it is also possible for the target to be a pre-

specified trajectory rather than a point in task space. In this

case, the error would be computed between the current posi-

tion of the end-effector and the current desired position

along the trajectory (typically time-locked).

Feedback control architectures have wide applicability

in engineered and biological systems. Even simple designs

typically lead to systems that accurately produce desired

behaviors, and which can naturally handle unstable or unpre-

dictable environments, including external perturbations to

the plant. However, incorrectly tuned feedback systems can

result in movements that grow uncontrollably or oscillate

indefinitely. Feedback architectures are also heavily depen-

dent on the quality of feedback signals. If those signals are

slow to propagate, or if they require extensive processing

once received, this can lead to motor commands being issued

based on outdated state information, resulting in poor and/or

slow performance. Additionally, if feedback signals are cor-

rupted or otherwise inaccurate, this can lead to inaccurate

movements. These final considerations are particularly

important for biological systems, as there are substantial

delays and noise inherent to neural processing of sensory

feedback.

2. Feedforward control

One way to avoid the problems of delayed and noisy

sensory information is to cut out the use of feedback entirely.

Figure 4(a) shows an example of a system architecture that

makes no use of any outputs from the plant for maintaining

control. Rather, the signals issued in the system are entirely

feedforward, with the motor commands depending only on

the reference signal. This architecture is commonly referred

to as an open-loop control system, although the terms feed-
forward and open-loop will be used interchangeably in the

present paper. The term feedforward control is sometimes

FIG. 4. (Color online) Control architecture of a generic (a) feedforward, (b) feedback, and (c) model predictive controller. The feedforward control architec-

ture is distinguished from the other two because the controller only receives information from the planner, not information from the plant or predicted informa-

tion from the plant. The feedback control and model predictive control architectures differ in the nature of the feedback received by the controller. In feedback

control, the state of the plant (different than the output) is sent back to the controller. By contrast, in model predictive control, the state of the plant is sent back

to the controller using an estimate of the plant based on a copy of the issued control signal.
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used more specifically to refer to control architectures that can

monitor perturbations to the plant, and adjust the motor com-

mands to compensate without the need for explicitly monitor-

ing outputs from the plant, usually by employing a highly

accurate mathematical model of the plant (see the section on

model predictive control, below). To date, the authors are

aware of only one modeling effort in the domain of speech

motor control to utilize this kind of architecture (Baraduc and

Perrier, 2017), with preliminary results presented.

The first row in Fig. 3 shows the progress of the robot arm

as controlled by a feedforward controller. From the beginning,

the trajectory of the end-effector is defined in task space as a

straight line originating at the end-effector’s current position.

The motor commands issued to the arm at each time step are

directly determined by this pre-specified trajectory. As in a

feedback controller, the reference signal is defined in task

space but motor commands must be issued in mobility space.

Again, this requires some kind of transformation from the

desired coordinates in task space to corresponding coordinates

in mobility space. Although the trajectory in this example is

specified in task space, as is often done, an alternative feedfor-

ward controller could define the plan in mobility space (that is,

for our robot example, in terms of joint angles) or even simul-

taneously in mobility and task space. In any case, a key aspect

of feedforward control is that no estimate of the state (that is,

the arm’s estimated position) is used by the controller at any

point throughout its movement. In the absence of feedback, the

simplest method of generating reasonable control signals is

simply to have the plan pre-specify the entire trajectory in task

or mobility space, and then issue motor commands that attempt

to carry out that plan step-by-step from beginning to end.

Feedforward control architectures are unsuitable for

unstable or unpredictable environments, where the plant can

be perturbed by interference external to the system. Without

the ability to detect and monitor errors in the system output,

errors tend to persist, or even compound over time. Despite

this obvious disadvantage, feedforward architectures are

sometime attractive because they are capable of issuing

motor commands quickly and without the need for complex

handling of feedback signals.

3. Model predictive control

An alternative to feedforward and feedback control is

model predictive control. A model predictive controller,

like the feedforward controller, makes no use of outputs

from the plant for maintaining control. However, this archi-

tecture does make use of an internal model of the plant,

which takes motor commands as input and transforms them

into a prediction of the system’s subsequent state, to predict

the effects of the issued motor command. This effectively

replaces feedback from the plant with a prediction of what

the controller thinks that the feedback should be (Garcia

et al., 1989; Miall and Wolpert, 1996). An example of this

architecture is shown in Fig. 4(c). This state prediction acts

as a kind of pseudo-feedback which can be compared

against the reference, producing an error signal that is pro-

vided to the controller.

Note that model predictive control can be viewed as a

special case of feedforward control, if the plant model is

considered to be part of the controller. This special case has

been separated out as a distinct architecture in the present

framework because it is central to several models of speech

motor control. Therefore, feedforward architectures, as dis-

cussed here, will specifically discount architectures that are

model predictive.

The third row in Fig. 3 shows the progress of the robot

arm as controlled by a model predictive controller. The func-

tioning of such a controller is similar to the feedback con-

troller example, above, in that the target is defined as desired

point in task space, and the motor commands issued are a

function of the error, ex, between the current position of the

end-effector and the point target. The difference is that the

error is determined by comparing the desired state to the out-

put of an internal model.

In terms of performance, the primary advantage of such

an architecture is speed, since the delays associated with pre-

dicting the plant’s state can often be much shorter than those

associated with feedback propagation. Additionally, a model

predictive controller is one way to avoid the need for having

an entire trajectory formulated before movement begins, as is

often the case with feedforward architectures. Rather, plans

can be more compact, such as a single, time invariant point in

task or mobility space (this is the same type of plan often used

in feedback controllers). The disadvantage of these systems is

that accurate internal models can be difficult to design or learn,

especially for complex, nonlinear plants such as the vocal tract.

A poor internal model would mean that the predicted state

may not match the true state of the plant, which can result in

inaccurate control. Even small errors in the prediction will

accumulate over time, since there is no way of correcting the

prediction. Additionally, model predictive controllers have

similar problems as feedforward control architectures in deal-

ing with unpredictable environments and perturbations.

4. Combining feedforward and feedback controllers

Each basic type of control system, feedback and feedfor-

ward control, has its own strengths and weaknesses. Feedback

control is stable in the face of external perturbations, but

becomes inaccurate or slow when sensory information is

noisy or delayed (respectively), as in most biological systems.

Feedforward control can be accomplished quickly, but is

unstable when the state of the system cannot be predicted due

to external perturbations. It is possible to combine some of the

strengths of feedforward and feedback systems, and mitigate

the weaknesses of each, by constructing a hybrid feedforward/
feedback controller, as shown in Fig. 5(a). This hybrid archi-

tecture comprises separate feedforward and feedback path-

ways that each issue their own motor commands, a

(potentially weighted) combination of which becomes the

final motor command that is issued to the plant. Such an archi-

tecture has the speed of a feedforward controller, but remains

sensitive to unexpected perturbations and accumulating errors.

Typically, the presence of the feedforward pathway allows for

lower gains to be utilized in the feedback controller, leading

to better stability.
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One of the most useful applications of model predictive

control is as a component of larger, hybrid architectures. For

instance, internal model predictions can provide quick

pseudo-feedback that can be used in conjunction with true

feedback to provide fast, reliable control even in the face of

long feedback propagation delays. Such methods are more

stable than true model predictive control, since internal pre-

dictions do not need to be perfectly accurate, and small devi-

ations between the predicted and actual states of the plant

can be corrected via the feedback signal. One example of

such a hybrid architecture is shown in Fig. 5(b), where a

model prediction—which could simply be an integrated

copy of the motor command sent to the plant—is combined

with the output of the feedback controller in a similar fash-

ion to that seen in Fig. 5(a).

Another architecture that exemplifies a hybrid model

predictive/feedback control architecture is the Smith predic-

tor (Ghosh, 2005; Smith, 1959), as shown in Fig. 5(c). A

Smith predictor effectively has three error comparison pro-

cesses, generating state errors serially through comparing the

state with a delayed version of the internal model prediction,

which in turn is compared to a non-delayed internal model

prediction, with this final comparison being subsequently

compared against the desired state from the reference signal.

The integrated mechanisms involved in combining model

predictions with feedback signals are sometimes referred to

in the literature as the “observer.” The present view adopts this

terminology. Note that the observer and speaker, in this concep-

tualization, are the same individual, as speakers observe their

own speech.

A Smith predictor is not the only controller that uses

both state predictions from an internal model and feedback

signals. Prominent alternative approaches also use a three-

part, cascaded error comparison process, but incorporate (a)

an observation model, that maps the model prediction into

sensory space for direct comparison with sensory measure-

ments, and (b) a gain that allows for potentially variable

weighting of model predictions and sensory measurement

error. These additional aspects can afford more accurate

estimation of the plant’s current state. This is the approach

taken by such classic control designs as the Kalman filter

(Kalman, 1960) [Fig. 5(d)], which provides an optimal3

state estimate with noisy feedback under certain strict

assumptions. Importantly, the estimated state that results

from combining internal predictions and feedback can be

compared with the desired state to generate a motor com-

mand (Todorov, 2004), just as in a pure feedback controller.

This type of controller is sometimes referred to as state
feedback control.

C. Speech models

The present discussion will now move from domain-

general motor control theory to models of speech motor con-

trol. Among the speech production models presented in the

literature, perhaps the two most prominent are DIVA and the

TD model. The development of DIVA has been driven since

the mid-1990s (Guenther, 1994) primarily by a team of

researchers at Boston University, led by Frank Guenther. TD

has been developed by researchers associated with Haskins

FIG. 5. (Color online) Examples of control architectures that are hybrids of simple control architectures discussed in Fig. 4. Diagrammed here are (a) a simple

feedforward/feedback hybrid, (b) a simple model predictive/feedback hybrid, (c) a model predictive/feedback hybrid with a sensory delay compensation model

(i.e., a Smith predictor), and (d) a model predictive/feedback hybrid incorporating an observation model that maps the model prediction into sensory space, as

well as a gain that allows for potentially variable weighting of model predictions and sensory measurement error (i.e., a Kalman filter).
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Laboratories, with Elliot Saltzman playing a key role, and

with the theoretical groundwork being laid about five years

prior to DIVA (Saltzman and Kelso, 1987; Saltzman and

Munhall, 1989). More recent models include SFC (Houde

and Nagarajan, 2011), the FACTS model (Parrell et al.,
2018), ACT (Kr€oger et al., 2009), and GEPPETO (Perrier

et al., 2006).

Any model of speech production control must include,

at a basic level, the ability to generate motor commands

based on some motor plan. Those motor commands in turn

activate a vocal tract model, possibly resulting in the genera-

tion of an acoustic signal. While complete models of speech

production also need to include the formulation of motor

plans, these elements are beyond the scope of the present

paper, which focuses more narrowly on controlling the vocal

tract for speech. An important reason for limiting the scope

of the present paper is that the longstanding debate over

acoustic vs articulatory targets of speech production tasks is

often intertwined with the critical issue of how the vocal

tract is controlled. For example, DIVA’s tasks are formu-

lated primarily in acoustic space, whereas applications of

TD (e.g., the Articulatory Phonology of Browman and

Goldstein (1986) often assume tasks to be constrictions in

the vocal tract. The choice of task space, however, is largely

independent of the control formulations that are the focus of

the current paper, and it is often possible to reformulate a

given control architecture using different task spaces.

Therefore, the present work will discuss the task space used

for each model, as the specific choice of task variables com-

prising the task spaces does differ between models, but will

make no attempt to discuss the relative merits of the differ-

ent task spaces used in the various models, as investigated,

for instance, by Galantucci et al. (2006), Guenther et al.
(1998), Houde and Jordan (1998), and Tremblay et al.
(2003). The concept of a task space is general enough to sit

over and above the specific choice of task variables, while

being well-defined enough as a concept to allowing mean-

ingful comparisons of the control architectures underlying

task space control.

Control elements that are relevant to any model of

speech motor control, and which will be discussed in depth

for each model in Sec. III, include (a) the nature of feedfor-

ward mechanisms of control, including the formulation of

the planner, (b) the nature and importance of feedback sig-

nals, (c) modeling of potentially imperfect sensory systems

and/or perceptual processing of feedback, (d) the conse-

quences of delays in feedforward and feedback pathways, (e)

the potential role of forward models in state prediction, (f)

the potential integration of both feedback and state predic-

tions for state estimation, (g) the implementation of transfor-

mations between task space, mobility space, and sensory

space, and (h) the design of the controller for generating and

issuing motor commands to the plant.

It is noted here that most current speech models are

examples of purely kinematic controllers. That is, they do

not account for dynamics or biomechanical considerations of

the vocal tract. It is typically assumed that inertial parame-

ters, centrifugal/coriolis forces and stationary external forces

like gravity can all be ignored for the purposes of controller

design and forward modeling. This may owe to the fact that

several prominent models of the plant are purely kinematic:

for instance, Maeda’s model (Maeda, 1982) and the Haskins

Configurable Articulatory Synthesizer (CASY) (Iskarous

et al., 2003; Rubin et al., 1981; Rubin et al., 1996). The

focus on kinematics may also reflect an implicit assumption

that dynamics of the plant can be ignored in the domain of

speech motor control. Such an assumption is quite common

in robotics and human motor control, and amounts to con-

ceptualizing the plant as a collection of stiff articulators,

akin to an industrial robotic arm. However, there is evidence

that biomechanical factors play non-negligible roles in

speech motor control (Buchaillard et al., 2009; Derrick

et al., 2015; Nazari et al., 2011; Ostry et al., 1996; Payan

and Perrier, 1997; Perrier et al., 2003; Sanguineti et al.,
1998; Shiller et al., 2002), and more recent vocal tract mod-

els such as Artisynth (Lloyd et al., 2012) incorporate

dynamic and biomechanical aspects in their design.

III. PROMINENT MODELS OF SPEECH PRODUCTION

In Sec. III A, each of the current models of speech motor

control will be discussed in turn, explaining the architecture

of the control system as it relates to the simple, domain-

general systems discussed previously. Where necessary,

additional components of each model will be touched upon,

such as motor program generation. How each model

addresses the key control elements listed above will also be

discussed.

A. DIVA

The DIVA model is a hybrid control system combining

a model-predictive controller with separate auditory and

somatosensory feedback controller loops (Golfinopoulos

et al., 2011; Guenther et al., 2006; Tourville and Guenther,

2011). Being arguably the most complete computational

model of speech motor control, DIVA has been developed to

address a number of theoretical issues, primarily focused

around replicating human speech production at behavioral,

neurological, and developmental levels. The use of both

model predictive and feedback control in DIVA is conceptu-

ally similar to a Smith Predictor. However, while a Smith

Predictor uses serial error calculations to issue a single motor

command, DIVA generates independent errors from each

controller simultaneously. Each error is then individually

transformed into a separate motor command. These three

commands are then combined into a single motor command

which is passed to the plant. The plant in DIVA has histori-

cally been Maeda’s model (Tourville and Guenther, 2011),

but several models of the plant have been used throughout

DIVA’s development [e.g., Callan et al. (2000)], and most

recently a custom plant model has been used (Guenther,

2016).4

The basic component of the planning process in DIVA

is the “speech sound,” which can be a phoneme, syllable, or

multisyllabic chunk. Each speech sound is linked to three

distinct tasks, each a function of time: an articulatory trajec-

tory (often called “motor” trajectory in the DIVA literature)

defined in mobility space ru(t), an auditory sensory trajectory
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raud(t), and a somatosensory trajectory rsomat(t). The “speech

sound map,” which corresponds to the planner, stores all

three-component sets of mobility and sensory state trajecto-

ries. Each trajectory of the set serves as the reference signal

to one of the controllers in DIVA: the articulatory trajectory

serves as input to the model-predictive controller, and the

sensory trajectories serve as input to the respective auditory

and somatosensory feedback controllers. The three-

component representation of speech sounds in DIVA means

that each speech unit has a fully specified articulatory trajec-

tory and time-locked sensory expectations. Uniquely among

models discussed in the present paper, the sensory expecta-

tions are not generated online through an internal model, as

in a state feedback controller.

The model predictive component of DIVA compares

the predetermined desired position of the speech articula-

tors at each point in time, ru(t), with their current predicted

position, ~u, generating a control signal, _ump. The predicted

mobility state in the current version of DIVA is equivalent

to the integration of the summed control signal _u over time

(which, as the motor position command, is also passed to

the plant). Essentially, the model predictive controller

assumes that the current plant state is equal to the last

desired mobility state passed to the plant. However, the

overall framework would be compatible with a more com-

plex prediction process that also incorporates sensory

information (Guenther, 2016).5 This enables comparison

of the estimated state of the vocal tract articulators ~u with

the reference signal ru(t) independently of sensory feed-

back. Although the model-predictive controller is typically

referred to as the “feedforward” controller in the DIVA lit-

erature, it is not a typical feedforward controller in the

sense of “open loop” control traditionally described in con-

trol systems, because it relies on a comparison between the

predicted current model state and a reference. In its current

implementation, the predicted state indirectly incorporates

some auditory and somatosensory feedback information as

well, since those pathways converge with the model pre-

dictive pathway. However, if the auditory and somatosen-

sory feedback controllers in DIVA are entirely removed,

the model predictive controller would function appropri-

ately in the absence of sensory information.

In the model predictive controller, the control signal is

generated from the following equation: _ump ¼ gmpG½ruða; tÞ
�~u�, where gmp is a scalar amplification gain applied to the

motor command, and G is an additional gain that can be

interpreted as a “go” signal, ranging between 0 (no move-

ment) and 1 (maximal movement speed) as in Bullock and

Grossberg (1988). Thus, the motor command is essentially a

scaled version of an error signal, where the relevant error is

between the articulatory reference signal and the predicted

current position of the plant in mobility space. Effectively,

the quantity ruða; tÞ � ~u is an approximation of _u prior to

scaling. The predicted current position of the plant is used as

a way of converting the reference signal into a velocity—

specifying a change in articulator positions—which can be

used directly as a motor command. Alternative ways of com-

puting the motor command would eliminate the need for the

model-predictive component of the feedforward controller,

converting it into a true “open-loop” system. For example,

the planner could approximate the first derivative of the

entire articulatory plan, and issue that as the reference signal.

Alternatively, the planner could issue the reference signal

within a window surrounding the current time point, which

would allow the controller to approximate the first deriva-

tive. Further details can be found in Appendix A.

The auditory and somatosensory feedback controllers

closely follow the generic feedback control architecture. The

auditory task space in DIVA is defined as the first three for-

mants (F1–F3) and the somatosensory task space is defined

as the positions of the individual articulators (propriocep-

tion) as well as the degree of contact between separate artic-

ulators (tactile sensation). Several publications have also

envisioned the somatosensory space including representa-

tions of constriction locations and degrees, as in TD (refer to

sections describing TD, below). The computations per-

formed by the sensory feedback controllers in DIVA begin

with a comparison between the reference signal and the sen-

sory output of the plant to produce an error signal in sensory

space. For the sake of simplicity, only the auditory feedback

computations will be presented here, but the form is the same

for the somatosensory pathways. The auditory error signal is

defined as eaud ¼ raudða; tÞ � yaud. This auditory task-space

error is then transformed into a mobility-space error via the

inverse kinematic equation _uaud ¼ gaudJð~uÞ�1
eaud. The

matrix J(u) is known as the Jacobian, which provides a map-

ping between changes in mobility space and changes in task

space. This mapping is dependent on the current mobility state

(u) or, as in DIVA, a prediction of that state (~u). Specifically,

in DIVA, the Jacobian contains the rate of change for each of

the dimensions of the task space for a corresponding change

in mobility space. The matrix JðuÞ�1
, is a pseudoinverse of

the Jacobian, which allows for transforming task-space

changes into mobility-space changes. The final motor com-

mand is then generated as the transformed error signal multi-

plied by a fixed gain, gaud. This represents a kind of

proportional control, where the motor command, ignoring

transformations for the moment, is simply a scaled version of

the error signal. Further details can be found in Appendix A.

The output of the model predictive controller and sen-

sory feedback controllers are summed to generate the final

control signal, _u. Thus, the final control signal passed to the

plant is the velocity of the articulators (or _u) needed to pro-

duce the desired change in the position of the articulators

(termed motor movement command). The control signal

additionally includes the integration of _u over time (u, or

motor position command). This combined motor movement

and position command is passed to the plant to drive changes

in the position of the articulators. The plant also produces

sensory outputs based on the position of articulators at each

time point, yaud and ysomat. In DIVA, the output of the plant

is in the space of the reference signal (F1-F3 for the auditory

reference, position of the articulators as well as articulator

contact for the somatosensory reference). This avoids need-

ing to model an auditory or somatosensory perceptual

system.

An important detail to note is that the auditory and

somatosensory reference signals are specified not as unique
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trajectories with a single value at each time point, but as

time-varying regions. The error signal for each space (audi-

tory or somatosensory) is the distance from the current state

to the edge of these regions. Thus, larger regions will allow

greater variability in production, as no corrective error signal

will be generated for any production that falls within the tar-

get region.

DIVA simulations have been able to qualitatively match

human behavioral responses to auditory and mechanical per-

turbations (Guenther et al., 2006; Tourville et al., 2008;

Villacorta et al., 2007). The model has also been used to

derive variable productions of /r/ (Nieto-Castanon et al.,
2005) based on a particular auditory target (low F3), a so-

called “trading relationship” or “motor equivalence” where

multiple articulatory configurations can be used for the same

phoneme. DIVA is also able to model carry-over and antici-

patory coarticulation at the planning level through the use of

convex sensory target regions and a look-ahead planning

mechanism (Guenther, 1995, 2016).

Speech acquisition and learning have also received sub-

stantial consideration in the development of DIVA. The pri-

mary mechanism for learning within the model involves

updating the motor plan based on generated auditory and

somatosensory feedback motor commands. Details of this

adaptive modification to the motor plan fall outside the scope

of the present review. Nonetheless, this pathway is indicated

by an open, labelled arrow in Fig. 6.

In addition to establishing the architecture of the speech

motor control system, one of the primary motivations behind

DIVA is establishing the neural basis of speech motor con-

trol. Individual components of DIVA have been mapped

onto particular brain regions based on experimental neuro-

imaging results and model simulations (Bohland and

Guenther, 2006; Ghosh et al., 2008; Golfinopoulos et al.,

2011; Guenther et al., 2006; Tourville et al., 2008), and sim-

ulation studies have provided good matches to behavioral

and neural activity recorded from human speakers during

auditory and somatosensory perturbation experiments

(Golfinopoulos et al., 2011; Niziolek et al., 2013; Tourville

et al., 2008; Villacorta et al., 2007).

B. TD

The primary focus of the TD model has been to model

how invariant linguistic targets can generate continuous

and context-dependent articulatory movements. The central

hypothesis of this model is that articulatory movements are

directed by the evolution of a task-level dynamical system

whose invariant parameters are determined by the linguistic

content of an utterance. TD was formulated by Saltzman

and Kelso (1987) in general motor terms, and then by

Saltzman and Munhall (1989) in the particular context of

speech production (see Fig. 7). TD is essentially a feedback

control architecture, as described in Fig. 7. The controller

uses a feedback comparator to relate the desired state

issued by the planner (rx(a, t)) to the current state of the

system (x). On the basis of this comparison (ex), the con-

troller computes a desired acceleration in task space (€x)

which is then transformed into a desired acceleration in

mobility space (€u). A crucial aspect of TD is that both the

desired state issued by the planner and the comparison per-

formed by the controller occur in task space, not mobility

space. This necessitates a transformation of the desired

acceleration in task space into mobility space before it can

be utilized as a motor command. The plant in the TD model

is the CASY model (Iskarous et al., 2003; Rubin et al.,
1996), which is a geometric model of the vocal tract, simi-

lar in spirit to Maeda’s model.

FIG. 6. (Color online) Control architecture of the DIVA model. The DIVA model has two feedback paths, auditory and somatosensory, that are schematically

identical, and a model-predictive pathway. The feedback pathways compute an error between the planner’s signal and the output of the plant. This error is

then used in conjunction with the state of the plant, u, to create a feedback control signal similar to the model predictive-feedback control architecture in Fig.

5(b). The model predictive pathway compares the desired position of the speech articulators with their current predicted position.
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One view represented in the literature and in the com-

munity of TD is that it does not incorporate a feedback pro-

cess. For example, Kr€oger and Birkholz (2007) state that a

serious problem with the TD approach has been the fact that

“perception (presumably feedback) as a control instance for

production is not considered.” It is true that TD does not

incorporate auditory feedback (which may, indeed, be a cen-

tral property of the model). However, based on the discus-

sion above, it should be clear that TD is, in fact, primarily a

somatosensory feedback-driven system. One criticism that

could be made of TD, is that the model, as implemented,

assumes that the current state of the plant in mobility space

is directly relayed via somatosensory feedback in a way that

is noiseless and instantaneous. Such treatment of sensory

feedback is clearly overly simplistic. Given that the focus in

TD was on the development of the dynamic control law, this

simplification would seem to stem from the specific empha-

ses and interests of the authors, rather than some central con-

ceptualization of speech motor control. Such was suggested

by the authors in at least one publication (Saltzman and

Kelso, 1987). Also note that this is essentially the same

assumption that DIVA makes, where part of the sensory

feedback signal is simply the positions of the articulators.

The computations performed by the controller in TD

begin with a comparison between the (task-space) reference

signal and the task-space position of the plant to produce an

error signal: ex ¼ rxða; tÞ � x. The error signal is then used,

along with the task-space velocity of the plant, _x, to update

the task-space acceleration of the plant via the feedback con-

trol law (called the “forward dynamics equation” in the liter-

ature): €x ¼ �M�1B _x �M�1Kex, where M is a diagonal

matrix of inertial parameters, B is a diagonal matrix of

damping coefficients, and K is a matrix of stiffness coeffi-

cients. Thus, the feedback control law takes the form of a

second-order dynamical system that transforms the error sig-

nal into the second derivative of the task-space variable x.

Since the task-space acceleration cannot be used directly as

a motor command, it is necessary to transform this task-

space acceleration into a mobility-space acceleration (€u).

This is accomplished through the use of a pseudo-inverse

Jacobian function: €u ¼ J�1ðuÞ½€x � _Jðu; _uÞ _u�. This mobility

space acceleration can then be integrated to produce mobility-

space velocity and position signals, ðu; _uÞ, that can be used by

the plant to drive changes in the position of the speech articu-

lators. Further details can be found in Appendix A.

TD views speech motor control as a problem of point

attractor dynamics. That is, motor tasks are conceptualized

as points in task space, toward which the system is drawn by

means of some governing control law which is a function of

the system state. TD describes the control law as a damped

oscillator system (i.e., second-order dynamical system).

Damped oscillator dynamics have a number of desirable

properties in terms of defining a control law. In addition to

the fact that damped oscillator dynamics are well-understood

and easily characterized, the use of such dynamics to model

task-directed behavior has the advantages that action pat-

terns will be globally smooth and continuous.

TD is closely related to proportional-derivative control.

It is common practice in engineering control systems to take

integral or derivative information of the error signal into

account [e.g., the ubiquitous proportional-derivative, PD,

and proportional-integral-derivative, PID, controllers—e.g.,

Åstr€om and H€agglund (1995)]. Integrating the feedback

error, for instance, allows a controller to recognize accumu-

lated errors, which it can then attempt to nullify. Using the

derivative of the feedback error, on the other hand, can mini-

mize undesirable future trends in the error signal, such as

overshoot, oscillation, and instability. In PD control, the con-

trol signal uPD is simply a weighted combination (given

some weight matrices KP and KD) of the error signal and its

first derivative with respect to time: uPD ¼ KPex þ KD _ex.

This equation looks remarkably similar to the feedback con-

trol law from TD: €x ¼ �M�1B _x �M�1Kex, except that

weights are specified, and _x is substituted for _ex. It can be

easily shown that €x ¼ uPD, given that KP¼M�1K and KD

¼M�1B, and knowing that rx has a constant value, and

therefore _rx ¼ 0. Thus, TD is equivalent to PD control up to

the generation of the task variable acceleration signal, but

FIG. 7. (Color online) Control architecture of the TD model. The system state, x, is broken out as both the state and change in state (first derivative), _x. This

information is used by the controller in the rectangle. Comparing this diagram to Fig. 4(b), one can see TD is a feedback control architecture.
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differs in the additional transformation of the task space vari-

ables into mobility space, and integration of the mobility

space variables.

The task space in TD is defined in terms of high-level

articulatory tasks (in contrast to the positions of the individ-

ual articulators themselves). For speech, the tasks are sug-

gested to be constriction actions (i.e., gestures) of the vocal

tract, such as achieving closure of the lips, rather than the

positions of the individual speech articulators (for the lip clo-

sure task, these would include the upper and lower lips as

well as the jaw). A point attractor task is derived by the plan-

ner from a time-varying “gestural score” that issues the

desired task state as a function of the currently active articu-

latory gestures. This definition allows TD to be easily put

together with Articulatory Phonology (Browman and

Goldstein, 1986). These two components form the basis for

the perspective on speech production widely associated with

Haskins Laboratories. Nevertheless, TD and Articulatory

Phonology are separate models that address different ques-

tions. Articulatory Phonology—proposed roughly in parallel

with TD—asserts that articulatory gestures are the primitive

units of spoken language. Gestures themselves are conceptu-

alized with AP as discrete vocal tract constriction actions,

which can be composed into gestural “scores” that function

as a motor program for a given utterance. Therefore, in broad

terms, Articulatory Phonology addresses the question of how

speech tasks should be defined, and how they can be com-

posed into a motor program, whereas TD addresses the ques-

tion of how those tasks can be achieved and how that motor

program can be realized in a physical system.

Use of second-order dynamics directly connects TD to

research on action planning and execution in biological sys-

tems. For instance, the VITE model is an influential neural-

inspired network model for explaining kinematic trajectory

formation of directed movement (Bullock and Grossberg,

1988). VITE comprises a network of three interacting

hypothesized neural populations, each coding a distinct

quantity that is needed in the generation of the motor com-

mand, given some target position. These neural populations

encode quantities related to the present position of the sys-

tem, the desired target position, and the difference between

the target and the present position. These interacting popula-

tions are configured in such a way that there are many struc-

tural similarities to the control architecture of TD. The result

of these similarities is that the present position of a popula-

tion will move in a way that is consistent with a second-

order dynamical system, much like TD [as pointed out by,

e.g., Beamish et al. (2006)].

One of the strengths of the model is accounting for coar-

ticulatory effects. Coarticulation in this model is seen as aris-

ing from temporal overlap of independent and invariant

articulatory gestures—the so-called coproduction model of

coarticulation (Browman and Goldstein, 1992, 1995b;

Fowler and Saltzman, 1993). Other coarticulatory effects,

such as clear vs dark /l/ alterations, have been modeled at

the planning level as changes in the temporal organization of

gestures (Browman and Goldstein, 1992, 1995a; Zsiga et al.,
1994).

Very early results from the TD model showed that it

was capable of reproducing the compensatory behavior seen

in mechanical perturbation experiments, where a lowered

jaw position during production of a bilabial stop is compen-

sated for by a higher lower lip and lower upper lip (Saltzman

et al., 1986). However, the model is unable to account for

auditory perturbations, as there is no auditory feedback

channel.

TD can produce simple speech-rate effects by changing

the dynamical parameters of the control law—e.g., by mak-

ing the task-space motions more or less damped. In addition

to these linear rate effects, the TD model is able to produce a

wide range of non-linear temporal effects seen in speech.

Through the p-gesture model (Byrd and Saltzman, 2003),

the model is able to capture the non-linear slowing found

adjacent to prosodic boundaries as well as capture many of

the spatial effects, such as larger movements (Fougeron and

Keating, 1997), seen at those boundaries within a single

framework. More recent work has extended the model to

account for syllable structure and prosodic prominence

(Saltzman et al., 2008). While some recent work has started

to explore neural mechanisms for some of the components

of the model (Tilsen, 2016), and a connection to the VITE

neural model (Lammert et al., 2018) has been established,

the components of TD have not been explicitly related to

specific neural structures.

C. SFC

The SFC for speech production model is a speech-

specific instantiation of the general Kalman filter-type archi-

tecture in Fig. 5(d) (Houde and Chang, 2015; Houde and

Nagarajan, 2011; Houde et al., 2014). The primary focus of

SFC has been to apply the insights gained from state feed-

back approaches in other motor domains to speech. This

type of model is used widely in current theories of motor

control in non-speech domains [e.g., work from Diedrichsen

et al. (2010); Scott (2004); Shadmehr and Krakauer (2008);

Todorov (2004); and Todorov and Jordan (2002)], and is an

evolution of a traditional feedback control system [Fig.

4(b)]. Recall that a primary challenge of feedback control is

that sensory feedback is typically noisy and delayed, making

the instantaneous state of the plant impossible to know with

perfect accuracy. By adopting a Kalman filter-type architec-

ture, SFC presents, in a speech motor control context, one

method by which sensory feedback may be integrated with

internal model predictions to produce improved estimates of

the state of the plant.

In the SFC model (shown in Fig. 8), estimation of the

plant state is done by an observer [refer to Fig. 5(d)]. This

observer receives a copy of the outgoing motor command

issued by the control law (also known as the efference

copy).6 Based on this signal, the observer predicts how the

plant will move at the next time step (ð~x; ~_xÞ) as well as the

auditory and somatosensory feedback that will be received

based on that predicted movement (ð~y; ~_yÞ). The predicted

sensory feedback is then compared with actual sensory feed-

back to calculate a sensory error (ðey; _eyÞ). This error is then

converted to a task state error (or task gain), via a gain
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function. Finally, the task state (ðx̂; _̂xÞ) is estimated using

the predicted state as well as the weighted sensory errors for

both auditory and somatosensory predictions. As the gains

associated with the sensory errors are assigned to optimize

the final estimation, the observer in SFC functions is a

Kalman filter (Todorov and Jordan, 2002), which provides

the optimal a posteriori estimate of the state, under the

assumption of linear processes of prediction and sensory

feedback. Note that the sensory feedback the observer

receives at any time point reflects the past state of the plant,

while the state prediction reflects the current state. This

delay is accounted for by delaying the sensory prediction

before computation of sensory errors.

The model does not make explicit mention of a refer-

ence signal or a planner, and by extension does not make

explicit mention of any comparison between sensory feed-

back and a reference. Providing a detailed description of

the controller has not been a focus in the development of

SFC, and therefore the controller, as presented in the litera-

ture, is represented by a generalized feedback control law

which is a function Uðx̂; _̂xÞ of only the state estimate. This

control law could take almost any form. However, the

authors of this review expect any feedback control law that

produces reasonable speech production behavior would

need to be a function of some kind of reference, whether an

explicitly planned trajectory or a gestural score. Indeed,

specifying the details of this feedback control law in SFC,

and the addition of a planner module, have been a primary

motivation for the development of the FACTS model,

described below.

By combining a state prediction with sensory feedback

to estimate the current state, the SFC model is able to act

quickly by operating principally on an internal prediction of

the plant state. This also allows the system to operate in the

absence of sensory feedback, either when that feedback is

too delayed to be of use (as for very fast speech movements)

or when sensory feedback is unavailable (as when speaking

in loud noise or in cases of non-congenital deafness). Yet,

the system is still able to respond when the internal

predictions do not match the incoming sensory feedback

(either due to errors in the prediction process or due to exter-

nal perturbations of the plant). Thus, this system combines

the major advantage of traditional feedback control systems

(robustness to perturbations) with that of feedforward control

(fast, accurate movement even in the absence of sensory

feedback).

Note that, in SFC as currently implemented, there is no

distinction between task space and mobility space; they are

effectively collapsed into a single space, such that com-

mands are issued in task space. This means that the current

implementation of SFC is only able to model a system where

the goals of speech production are the same as the mobility

space of the system. SFC has been implemented to control

pitch, where the fundamental frequency of vocal fold vibra-

tion maps onto a one-dimensional mass-spring system.

This model has been shown to accurately reproduce the

behavior patterns of human participants in pitch-alteration

studies (Houde and Nagarajan, 2011). The model has also

been shown to reproduce two neural effects seen in human

speech: (1) the reduction seen in cortical electroencephalogra-

phy (EEG) or magnetoencephalography (MEG) signals when

speaking compared to listening to the one’s own speech

played back over headphones or speakers (speech induced

suppression) and (2) the enhancement of the EEG /MEG sig-

nals when seen when one’s speech is externally perturbed

compared to when it is unperturbed (speech perturbation).

D. FACTS

Recently, a new model—the FACTS model—has been

proposed that combines aspects of both TD and SFC (Parrell

et al., 2018, 2019). Building on TD and SFC, FACTS com-

bines elements of feedback control and model predictive

control. FACTS is an attempt to combine the strengths of

each model, while addressing the major shortcomings of

each. Specifically, the TD model includes a well-developed

control law that relates the movements of the speech articu-

lators to high-level tasks, but assumes perfect knowledge of

FIG. 8. (Color online) Control archi-

tecture of the SFC model. The final

state estimate passed back to the con-

troller as a feedback signal, ðx̂; _̂x Þ, is

derived from a combination of a state

prediction process and sensory pro-

cesses. Comparing this diagram to Fig.

5(d), one can see that SFC is an inte-

grated model predictive feedback con-

trol architecture.
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the state of the vocal tract. Conversely, SFC focuses princi-

pally on how the state of the plant can be estimated from

sensory information given the noise and time delays inherent

in auditory and somatosensory perception, but has to date

only been used to control a very simplistic one-dimensional

model of pitch. FACTS combines the concept of state pre-

diction and estimation from SFC with the planning model

and vocal tract control of TD.

The architecture of FACTS is shown in Fig. 9. The con-

trol component of the model is the same as that for the Task

Dynamic model, with a planner generating a gestural score,

which is passed to a feedback controller to generate changes

at the task (€x) and mobility (€u) levels. This final motor com-

mand, €u, is passed to the plant to produce articulator move-

ments as in TD. However, where TD passes the current plant

and tasks states directly back to the feedback controller,

FACTS uses an observer to estimate the task and plant

states, as in the earlier SFC model. The final motor command

€u is passed to an internal model of the plant to generate pre-

dicted articulator positions (ð~u; ~_uÞ), as well as auditory and

somatosensory feedback (ð~y; ~_yÞ). The estimated sensory

feedback is then compared with sensory feedback from the

plant to generate a sensory error (ðey; _eyÞ). The estimated

mobility state is generated from the predicted mobility state

and the sensory error via an unscented Kalman filter, an

extension of the linear Kalman filter to nonlinear systems

(Wan and Van Der Merwe, 2001). The estimated mobility

state is then converted to an estimated task state, needed by

the feedback controller to generate the motor command at

the next time point, via the same forward kinematics func-

tion as in TD.

The FACTS model is relatively new, and so remains

mostly untested. However, the model is able to qualitatively

reproduce human responses to external perturbations, including

full compensation for mechanical perturbations and partial

compensation for auditory perturbations (Parrell et al., 2018).

This partial compensation is a function of both auditory and

somatosensory acuity. One of the features of FACTS is that it

builds on the successes of the TD model. Since many of the

mechanisms of the controller are shared between the two mod-

els, FACTS can, in theory, reproduce the successes of the TD

model, such as coarticulatory effects, although simulation stud-

ies are needed to verify these properties.

E. ACT

The primary focus in the ACTion-based model of speech

production, speech perception, and speech acquisition (ACT)

is the acquisition and development of speech motor control.

Kr€oger et al. (2009) introduced ACT as a neurocomputational

model that draws elements from both DIVA and TD. The

architecture of ACT, shown in Fig. 10, is essentially a feedfor-

ward controller when viewed between the motor plan and the

plant. DIVA-style dual auditory/somatosensory feedback

pathways are also part of the model. However, those pathways

feed indirectly to the planner, by way of high-level compari-

sons against abstract phoneme templates. Within the present

framework, information used to modify the motor plan is con-

sidered to be part of the planner, and is therefore outside the

scope of low-level control, as defined here. This pathway is

indicated by an open, labelled arrow in Fig. 10. The plant in

ACT is a three-dimensional kinematic model with articulatory

control parameters similar to the Maeda and CASY models

(Birkholz et al., 2006).

The planner in the ACT model relates to both the speech

sound map of DIVA and the gestural score in the TD model.

Like in DIVA, the basic unit of speech is assumed to be the

syllable, and each syllable is represented by a model neuron

FIG. 9. (Color online) Control architecture of the FACTS model. FACTS builds upon the architecture of the TD model by substituting an estimate of the

mobility-space state for the true state through an observer module. The observer generates this mobility state estimate through a combination of an internal

mobility state prediction and multisensory feedback. As such, FACTS is an implementation of an integrated model predictive controller, like SFC.
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in the phonemic map (cf. the speech sound map in DIVA).

As in DIVA, these abstract syllable representations are

linked to specific motor and sensory plans. This is accom-

plished in ACT through the phonetic map. Unlike in DIVA,

where the motor plan is represented as a time-varying

desired articulatory position signal, the motor plans in ACT

are defined in terms of high-level dynamic tasks (or gestures)

as in TD. Each motor plan is, in effect, a gestural score,

which defines the activation levels and temporal extent of

each speech gesture, with each speech gesture being defined

as a dynamical point-attractor (rx).

The phonetic map, in addition to linking the syllable to

the motor plan, also links the syllable to associated sensory

(auditory and somatosensory) expectations. One conceptual

difference between ACT and DIVA is that DIVA views the

sensory plans as the targets of speech that have associated

motor plans, while in ACT the targets are the high-level task

gestures with associated sensory expectations. This concep-

tual difference is reflected principally in terms of how the

models are trained (an issue not taken up within the scope of

the present review), but the basic architecture of the models

is essentially the same: a high-level syllable activates a

motor plan used for feedforward or model-predictive control

and a sensory plan which can be compared against afferent

sensory information.

The core control architecture in the ACT model borrows

ideas from TD, but is quite distinct. As discussed above, TD

makes use of task-space comparisons between a reference,

derived from the task-based gestural score, and the current

(somatosensory) system state to control task-space move-

ments given a control law that is consistent with damped

oscillator dynamics. ACT, on the other hand, uses the refer-

ence, similarly derived, to directly drive motor action in a

feedforward fashion. This is accomplished by the motor

execution module, which uses the reference rx(a, t) to gener-

ate a trajectory in task space (x(t)) that is consistent with

damped oscillator dynamics. The task-space trajectory must

be transformed into a mobility-space trajectory (u(t)) that

can be used as a control signal to drive movements of the

plant. This transformation is accomplished by the primary

motor map. A subsequent neuromuscular processing step

exists in the model, and is presently implemented as a direct,

linear mapping. Plans exist for this component to eventually

map control signals onto individual and/or combined muscle

groups in a neuromuscular model. An additional pathway for

somatosensory feedback processing is also planned. This is

indicated by dashed lines in Fig. 10. This feedback pathway,

included in published figures representing ACT, would be

used to “control motor execution,” presumably in a fashion

similar to DIVA. This pathway has not yet been imple-

mented, and the details of its properties have not been fully

developed.

Like DIVA, the ACT model also has dual somatosen-

sory and auditory feedback pathways. The principal way

these feedback pathways are used in the model is to compare

the current state of the plant against pre-learned templates

representing the desired somatosensory and auditory states.

A crucial difference between ACT and other models is that

this error signal is only used to influence the motor plan,

rather than as part of the controller. That is, sensory feedback

is used to detect sensory errors for updating the phonetic

map to drive trial-to-trial adaption, a model of development

and learning.

One difference between the ACT model and others is

that the mappings that relate the different signals (sylla-

bles 7! rx, syllables 7! ry; rx 7! ru; ru 7! _u, etc.) are imple-

mented via tunable neural networks rather than as closed-

form mathematical expressions. These networks are tuned

FIG. 10. (Color online) Control architecture of the ACTion-based model of speech production, speech perception, and speech acquisition (ACT model). ACT

draws from both DIVA and TD for its architecture, with the model comprising both feedforward and feedback pathways (both somatosensory and auditory),

but relying on point-attractor dynamics for its reference signal.
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during a learning phase. Some versions of DIVA presented

in the literature, especially earlier in DIVA’s development,

had neural networks involved in these mechanisms

(Guenther, 1994). The use of trained neural network models

for these transformations allows for flexibility in the form of

the transformations. It opens the possibility that the transfor-

mations might take forms that deviate in unexpected, and

potentially even biologically plausible, ways when compared

to mathematically driven transformations typically adopted.

The use of neural networks also makes it likely, however,

that key transformations, such as the control law and the

inverse kinematic transformations, cannot be easily written

down analytically in closed form.

The ACT model is able to produce motor equivalence in

articulators linked to the same gesture due to the use of high-

level tasks rather than articulatory positions as the basic unit

of the motor plan (Kr€oger et al., 2009). The model is also

capable of adaptive learning based on high-level auditory

errors or somatosensory perturbations, by changing the

motor plan. However, the lack of feedback pathways in the

controller means online compensation to these perturbations

is not accounted for. The ACT model includes hypotheses

about the neural structures that underlies the different com-

ponents but to date has not been used to generate simulated

neural activity to compare to neural data.

F. GEPPETO

The GEPPETO model (Patri et al., 2015; Patri, 2018;

Perrier et al., 1996; Perrier et al., 2006) is a model of speech

control based on the equilibrium point hypothesis (Feldman,

1986, 1990). The primary focus of GEPPETO has been to

investigate the hypotheses that (1) targets for speech produc-

tion are discrete and phonemic, (2) biomechanics plays a non-

trivial role in speech motor control, and (3) speech motor con-

trol employs optimal planning principles. In GEPPETO, as in

the equilibrium point hypothesis, control occurs at the level of

individual muscle lengths. Thus, the mobility space in

GEPPETO is composed of lengths, uk, of individual muscles

k. The command generated by the central controller is a mus-

cle length, or threshold, above which motor neurons will be

recruited to contract the muscle. This threshold length is

known as the equilibrium point or k. Afferent feedback from

the muscle about the current muscle length is compared

against the current k, and contractile force is generated if the

muscle length is above the threshold. In GEPPETO, the acti-

vation (A) of each muscle at time t is based on both the cur-

rent muscle length u and the current change in muscle length

_u : Aðk;tÞ ¼ ½ukðtÞ � kkðtÞ þ ck _ukðtÞ�þ, where c is a damping

parameter that stabilizes the system. Muscle activation is only

generated when the muscle length is greater than k:

½A�þ ¼ fA; if A � 0; 0; otherwiseg.
The muscle activation generated by the feedback controller

then leads to the generation of force (f) in the individual

muscles at the level of the plant: fkðkk; tÞ ¼ qk½expðckAkðkk; tÞ
�1Þ�, where q is a magnitude parameter related to the cross-

sectional area of the muscle and c is a feedback gain. In this

feedback control architecture, force can be generated either by

changes in the current k or by changes in the length of the

muscles. Importantly in this approach, the ultimate position of

the plant results from a combination of descending control (k
values), plant biomechanics, and physical constraints.

The GEPPETO model, shown in Fig. 11, combines the

low-level feedback control structure of an equilibrium point

model with a high-level feedforward controller that takes

acoustic speech targets, defined as convex regions in acous-

tic (F1-F2-F3) space, as input and output k values that are

passed to the feedback controller. Thus, the task space for

GEPPETO is acoustic in nature [though see Patri (2018) for

a recent extension of the model to additionally include

somatosensory targets]. Critically, given the emphasis on the

physics of the speech plant, GEPPETO uses a dynamical

biomechanical model of the plant with control occurring at

the level of muscles rather at the level of geometric model

parameters/articulators as in the Maeda or CASY plant mod-

els. Most published papers on GEPPETO include only the

tongue as a controllable articulator. It is modeled as a finite-

FIG. 11. (Color online) Control architecture of the GEPPETO model. GEPPETO is based on the equilibrium point hypothesis, employing feedback control at

the level of individual muscles, with relatively realistic biomechanics to move the speech articulators. Control is mediated by a feedforward process that trans-

forms acoustic speech targets into equilibrium point values.
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element model with six muscles whose lengths can be inde-

pendently controlled. The other vocal tract surfaces and

articulators are fixed.

The output of the planner in GEPPETO is a series of n
acoustic speech targets (/1,…,/n), each of which has an

intended duration (T1,…,Tn). This duration can be affected

by variables such as speech rate or stress. An additional con-

straint sets the amount of effort to be used for each speech

target (w1,…,wn), where effort is based on the amount of

force that will be generated to produce that target across all

the muscles of the plant, categorized into three levels:

w 2 f“weak,” “medium,” “strong”g.
This time series of targets rxðtÞ ¼ fð/1;w1; T1Þ;…;

ð/n;wn; TnÞg is then passed to the feedforward controller to

generate a time series of k values for each of the six muscles

in the plant, [k1(t),…, k6(t)]. These k trajectories are gener-

ated for each utterance using an optimization procedure that

minimizes displacements in mobility space (i.e., changes in

muscle lengths) while producing tongue movements that

will achieve the required acoustic targets at the required time

with the required amount of effort. In this optimization pro-

cess, learned internal models are used to estimate the amount

of force and acoustic signal generated for any given motor

command.

GEPPETO shares certain characteristics with other

models. First, speech goals are defined as regions in acoustic

space (F1-F2-F3), as in DIVA. Second, feedback signals are

never directly compared against the output of the planner, as

in ACT. GEPPETO differs in key ways from other models,

however. First, the speech targets in GEPPETO are hypothe-

sized to be discrete in time, rather than time-varying regions

as in DIVA. Second, the feedforward and feedback control-

lers in GEPPETO are arranged in a unique, serial or hierar-

chical arrangement, such that the output of the feedforward

controller is used as the input to the lower-level feedback

controller. Third, unlike the preplanned trajectories in

DIVA, GEPPETO generates new movement plans for each

utterance. Finally, it is notable that GEPPETO is unique in

the fact that the plant’s inputs are not given in mobility-

space variables.

The largest success of the GEPPETO model has been to

replicate many of the characteristic kinematic patterns of

speech movements, including velocity profiles (Payan et al.,
1997), tongue loops in velar stops (Perrier et al., 2003), and

the relationship between velocity and movement curvature

(Perrier and Fuchs, 2008). Such work shows that many of

these phenomena need not be directly controlled, since in

GEPPETO they are emergent properties of linear changes in

k values. The GEPPETO model has recently been expanded

by implementing it in a probabilistic Bayesian framework

(B-GEPPETO) that is able to account for token-to-token var-

iability (Patri et al., 2015; Patri, 2018). This newer model

also incorporates somatosensory phonemic targets in addi-

tion to auditory targets.

G. Other models

All the above models include, at a minimum, the ability

to generate motor commands based on some motor plan.

These motor commands are then used to move a vocal tract

model of some kind. While such complete models are the

primary focus of the current review, it is important to also

mention more conceptual models which have not been

implemented to the same degree. The Hierarchical SFC

model (HSFC) (Hickok, 2012a,b, 2014) is an attempt to

combine speech motor and psycholinguistic approaches to

speech production. It is a version of an integrated predictive/

feedback controller, sharing some aspects with the SFC

model of speech production (Houde and Nagarajan, 2011).

Tian and Poeppel (2010) propose a hybrid model predictive/

feedback control model of speech motor control. The overall

architecture is also very similar to the SFC model (Houde

and Nagarajan, 2011).

A few other models of speech motor control have been

proposed that have focused primarily on the biomechanical

properties of the plant rather than on the control architecture

per se (Dang and Honda, 2002, 2004; Laboissiere et al.,
1996; Ostry et al., 1996; Perrier et al., 1996; Sanguineti

et al., 1998). While these models do not relate control to lin-

guistic speech targets (i.e., describe how or why certain mus-

cle contraction patterns would be used), the success of these

models in recreating measured articulatory trajectories

deserves mention in the context of the present review.

One class of these models [reviewed in Sanguineti et al.
(1998)], is based on the equilibrium point control. While this

is the same general approach as taken by the GEPPETO

model, the focus of this work differs. Rather than imple-

menting control of the speech motor system in terms of

higher-level linguistic or task-directed (auditory, articula-

tory) control, these models focus principally on how muscle

forces are generated to move the speech articulators.

Typically, the goal is to drive movements to match measured

human speech kinematics. These models essentially imple-

ment a feedback controller, albeit one that functions entirely

at the level of the plant without any distinction between task

and mobility space. A separate set of biomechanical models

assumes that muscle activations are the output of the control-

ler, rather than equilibrium points (Dang and Honda, 2002,

2004). This is a purely feedforward control architecture.

Both the equilibrium point models (Sanguineti et al.,
1998) as well as the direct activation models (Dang and

Honda, 2004) have been shown to fit articulatory data well

using similar biomechanical models. Interestingly, results

from both models suggest that motor commands to certain

muscles (or muscle groups) will drive the speech articulators

towards a similar location regardless of their initial position.

This suggests that speech motor control may be simplified

by the use of muscle synergies that will drive the system to a

target spatial configuration without the need for complex

inverse dynamics models that calculate the precise muscle

activations needed for each individual movement.

One important thing to note is that, because they focus

on the generation of muscle forces given some given motor

commands, this class of models is generally complementary

to and compatible with control models that output motor

commands as articulatory positions, and ignore the genera-

tion of muscle activations (such as DIVA, TD, ACT, and

FACTS). With some modifications, the output of these
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models could serve as the input to an equilibrium point

model or the Dang and Honda model. In fact, equilibrium

point control has been implemented within the DIVA archi-

tecture (Zandipour et al., 2004).

IV. DISCUSSION

The primary goal of the current paper has been to

clearly lay out the architectures of a crucial component of

existing speech motor control models: the control layer (see

Fig. 1), that attempts to produce accurate tracking of speech

articulation kinematics given a motor plan. Common termi-

nology and basic principles of motor control were used to

describe each model, to understand the commonalities

between these models, as well as how they differ. It was

shown that these models can be cast as special cases of gen-

eralized feedforward [Fig. 4(a)], feedback [Fig. 4(b)], and

model predictive [Fig. 4(c)] controllers. The models dis-

cussed here differ in which of these components are used

(e.g., some are lacking either feedforward or feedback ele-

ments of control), and in the detailed implementation of

these mechanisms. These differences are summarized in

Table I. Speech production is, however, a complex process

with many additional and important considerations, includ-

ing higher-level motor planning, linguistic, communicative

and even social considerations, as well as learning and

developmental aspects, all of which contribute to the wide

variety of speaking styles observed in real human speech.

These aspects are beyond the scope of the present paper, but

would make an interesting subject future reviews.

There are clear differences among models in terms of

how their final execution of speech motor control is influ-

enced by feedback signals originating from the plant. ACT,

for instance, incorporates no explicit feedback into its con-

trol mechanisms. SFC implements proportional control,

meaning that the motor commands are linearly proportional

to the feedback error. DIVA’s also implements proportional

control which, for its hybrid architecture means that motor

commands are linearly proportional to both the error (in the

feedback pathway) and the reference (in the feedforward

pathway) signals. The simplicity of these designs relative to

common engineering approaches is notable. As mentioned

above, and by way of example, engineering control systems

often take information about the integral or derivative of the

error signal into account in order to provide quicker conver-

gence to the target and to deal with persistent errors, respec-

tively. TD—as well as FACTS, by way of adopting key

control elements from TD—provides slightly more complex-

ity through a form of PD control, albeit not strictly in the tra-

ditional engineering sense of PD control.

A related distinction between the models under consid-

eration is how they function in the absence of feedback. TD,

for instance, is solely a feedback architecture, and cannot

function in the absence of feedback signals. Similarly,

GEPPETO would not be able to function in the absence of

proprioceptive feedback about muscle length. Other models

could continue to function without feedback. DIVA is a

hybrid feedback/model predictive architecture that could

rely exclusively on its model predictive mechanisms to gen-

erate motor commands in the absence of explicit feedback.

With the presence of feedback signals, SFC and FACTS can

utilize that feedback to produce optimal or near-optimal state

estimates [under certain strong assumptions, such as linearity

of the plant (Kalman et al., 1960)], but in the absence of

feedback can still rely on the internal state prediction com-

ponent of their broader state estimation process to continue

functioning through model predictive control. ACT is a

purely feedforward architecture that can function as

designed in the absence of sensory feedback. However, this

also means that it is not sensitive to sensory feedback, unlike

the human speech motor control system.

Among models that incorporate feedback, one of the

most basic differences is whether certain feedback signals

are treated as idealized signals that are directly and instanta-

neously observable, or whether they are treated as true sen-

sory signals that may be potentially noisy/delayed, subject to

conditioning by internal models and that correspond with

known neurological signals. While it seems intuitively cor-

rect that any model of biological motor control should focus

on the latter, the former has been sometimes intentionally

chosen in specific aspects of the models, in the interest of

focusing on other aspects of control. TD provides only an

idealized view of feedback concerning the positions and

velocities of articulators that does not model the sensory pro-

cesses in any meaningful way. DIVA, TD, and FACTS also

make simplifying assumptions about the somatosensory

feedback signal, which is assumed to be more or less equiva-

lent to the plant’s mobility variables (although note that

DIVA also includes tactile information as part of the somato-

sensory feedback). DIVA’s auditory and somatosensory

feedback are slightly less idealized in that they correspond to

known, independent neurological pathways and can incorpo-

rate delays associated with sensory transduction and process-

ing. SFC and FACTS begin with the assumption that sensory

feedback will be noisy and/or inaccurate, and use that

assumption to motivate the well-elaborated integration of sen-

sory feedback with internal model predictions to provide more

accurate estimates of the state of the plant. GEPPETO provides

perhaps the most realistic implementation of somatosensory

TABLE I. Summary of which aspects of motor control modeling are present in each model.

DIVA TD SFC FACTS ACT GEPPETO

Feedback Pathway Y Y* Y Y Y Y

Feedforward Pathway N N N N Y Y

Internal Prediction/State Estimation Y N Y Y N N

Principal Reference Tourville and

Guenther (2011)

Saltzman and

Munhall (1989)

Houde and Nagarajan

(2011)

Ramanarayanan

et al. (2016)

Kr€oger et al.
(2009)

Perrier et al.
(2006)
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feedback given that the feedback in the model (muscle

length and change in muscle length) corresponds to well-

known afferent signals from muscle spindles. However, no

current models seriously attempt to model the sensory sys-

tem itself—they take it as given that critical information

(e.g., formants, articulatory positions) can be extracted from

the raw sensory input.

Most models are purely kinematic in how they approach

control, in that motor commands are stated in kinematic

terms (i.e., as state configurations, and not as forces) and do

not account for dynamical considerations related to the

effects of inertia, centrifugal and centripetal forces, and the

effects of gravity. Control systems that are strictly linear,

rigid and slow-moving, highly damped, or that have special-

ized designs can sometimes operate purely kinematically. It

seems likely, however, given existing literature [e.g.,

Derrick et al. (2015); Ostry et al. (1996)] that such consider-

ations may be non-negligible for speech production in the

biological case. A kinematic approach can be, in the opinion

of the authors, partially attributed to models of the plant

used in most speech motor control models, which are nearly

all kinematic in nature. It is worth noting that other plant

models are attempting to provide enhanced biomechanics

(Derrick et al., 2015; Gick et al., 2011; Lloyd et al., 2012) as

well, even if a full review of biomechanical vocal tract mod-

els is beyond the scope of the present review. GEPPETO

represents a notable effort to move beyond kinematic treat-

ment of control, and of the plant, by incorporating a mobility

space that represents muscle lengths, as well as motor com-

mands that represent muscle activations that are used to gen-

erate muscle forces in a relatively realistic biomechanical

model of the tongue.

All architectures rely on a motor plan of some kind—

whether an explicitly planned trajectory or a gestural

score—that is formed at a higher level of motor processing,

and which is issued to the controller in order to be carried

out. This is indicated in the diagram for each model by the

planning module. While these planning components have

not been the focus of the current review, some of the models

(notably DIVA and TD) also include computational imple-

mentations of the planner (Bohland et al., 2010; Saltzman

et al., 2008) that operates between the higher-level linguistic

processes and the controller (Fig. 1). SFC is a partial excep-

tion to this general statement in that, as mentioned above,

that model does not explicitly mention the incorporation of a

plan, even though the generalized structure of its controller

would be able to incorporate a planning module if more

detailed specification required it (a specification which

FACTS has subsequently elaborated upon). Models of

speech motor planning have been discussed and elaborated

upon in the literature (Bohland et al., 2010; Byrd et al.,
2009; Civier et al., 2013; Saltzman et al., 2008), and display

a surprising amount of variety. Although the planning level

is beyond the scope of this paper, it is worth noting the vari-

ety of planning mechanisms that have been proposed in

order to help narrow some of the longest-standing debates

concerning speech motor control. In particular, drawing a

clear distinction between control architectures and planning

mechanisms, as this review has attempted to do, makes it

apparent that much of the debate over the quality of compet-

ing models of speech production would appear to be concen-

trated at the planning level, and not at the level of control.

For instance, issues surrounding the nature of production

goals (e.g., acoustic vs articulatory) and the composition of

those goals into utterance-size units would primarily be a

concern of the planning level. Any role for motor primitives

(Ramanarayanan et al., 2014) would be most naturally incor-

porated into the planning level, and not the level discussed

in this review. The nature of speech production goals has

been the subject of particularly strong debate for decades

[see, e.g., Galantucci et al. (2006); Guenther et al. (1998);

Houde and Jordan (1998); Perkell (2012); Perrier and Fuchs

(2015); Sato et al. (2013); Tremblay et al. (2003)], and is

reflected in the nature of the feedback and reference signals

in the models, which may be auditory and/or somatosensory,

as in DIVA and SFC, or articulatory, as in TD. Interestingly,

the nature of the feedback signals would appear to have little

bearing on the specific architectural choices of the models—

the architectures being general enough to handle a range of

signals without substantial changes to their configuration.

An important consideration for models of speech motor

control is the ability to represent the long-term changes in

speech motor control that occur during development and

aging. Such changes could be modeled by adjustments to

control parameters over time. ACT allows for motor plan-

ning to be adapted based on sensory feedback errors. DIVA,

too, adapts planned trajectories based on the feedback con-

troller output. Such adaptation is of primary importance dur-

ing development, but can lead to changes at any time. In

control theory, controllers that adapt their parameters over

time are the subject of adaptive control (Åstr€om and

Wittenmark, 2013). This well-studied branch of control the-

ory may provide a foundation for models of speech produc-

tion to further incorporate such parameter adjustments, in

the interest of modeling aspects of development and aging.

A full treatment of adaptive control is outside the defined

scope of the present paper, as are issues surrounding speech

development.

Shorter time-scale cognitive and physiological factors—

for instance, due to attention, fatigue, and motivation—as

well as stochastic variability (Munhall et al., 1994; Saltzman

et al., 1995; Tilsen, 2017) may also most naturally be han-

dled through adjustments to control-level parameters. Efforts

have been made to model learning and adaptation at the

planning level (e.g., DIVA and ACT). However, the value of

the proportional gain in DIVA’s controller, as well as the

weights assigned to the feedback and model predictive path-

ways in their contribution to the motor command, are

assumed to be fixed in fully adult speech. Similarly, the

damping and stiffness parameters of the controller in TD are

fixed in value. A notable counterexample to this generaliza-

tion comes from Kalman filter-based architectures, such as

SFC and FACTS, which change the weight assigned to sen-

sory feedback and internal model predictions, toward com-

bining them into a single state estimate, based on the degree

of statistical reliability of those two pathways. Such adapta-

tion may be useful in modeling the impact of sensory feed-

back impairment on speech motor control. Another notable
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example of this type is DIVA’s GO signal, which can be

adjusted by higher-level processes in order to control the ini-

tiation of movement and overall speaking rate.

A clear understanding of how the various models are

structured can aid in clearly defining theoretical questions of

interest. For instance, the many similarities of the models

discussed in this review naturally raise questions about what

is gained by allowing the remaining model dissimilarities to

persist, and whether the models can converge to a single,

unified model of the control layer in speech motor control.

There is no mathematical reason why the feedforward/feed-

back pathways embodied by DIVA could not be combined

with the forward dynamic control of TD, as well as the feed-

back/internal model-based state estimation in SFC. Indeed,

FACTS, as a combination of complementary elements of TD

and SFC, has already taken a step toward beginning these

potentially useful combinations. Whether such a unification

is sensible from a theoretical point of view, and precisely

what form that unification might take, can be stated very pre-

cisely in mathematical terms using the model architectures.

In general, models can help in defining and circumscribing

the space of possible architectures and solutions to a speci-

fied biological control problem (Schaal and Schweighofer,

2005).

A related, empirical question is whether a model unifi-

cation is useful for explaining observations from human

speech data. Among the many benefits of developing formal

models of speech motor control is that models can be used to

make specific, quantitative predictions about human speech

behavior that are testable in light of data. The predictive

capabilities of formal models can also guide the design of

new experiments to test specific aspects of theory and

modeling, inspired by the behavioral predictions of the

model, and perhaps piloted in silico. Empirical questions

regarding the models need not be limited to observable

behaviors, either. Models can also facilitate clearer connec-

tions to be drawn between specific model mechanisms and

their observed neurological counterparts, either through

structural or functional neuro-imaging. The connection

between engineering and biological mechanisms has been

well developed in several domains of motor control, includ-

ing speech motor control (Guenther et al., 1998) and oculo-

motor control (Lisberger, 1988; Robinson, 1981; Shibata and

Schaal, 2001).

The utility of speech motor control models additionally

extends beyond clarifying and formalizing our understanding

of speech motor control itself. Models can also be useful for

practical applications in speech synthesis. Control models,

coupled with faithful mechanical models of the vocal tract,

hold promise for applications in flexible and expressive

speech synthesis. This kind of synthesis is typically called

articulatory synthesis. Shadle and Damper (2001) outlined

several complementary advantages that articulatory synthe-

sizers should have over now widely adopted data-driven

approaches like concatenative synthesis (Black, 2002) and

Hidden Markov Model-based synthesis (Schroeter, 2006).

Among these advantages are (a) the promise of producing

speech associated with extraordinary speakers (e.g., an

exceptional opera singer) or hypothetical speakers, from

whom data can be difficult or impossible to collect, (b) the

promise of changing the quality or type of speaker without

having to perform additional statistical training of the syn-

thesizer, (c) the promise of having meaningful parameters

that can be helpful in fixing or adjusting the synthesizer out-

put, in addition to providing insights into human speech

production.

The models discussed here, in addition to being formal

and mechanistic, are also causal, by intention of their devel-

opment and by virtue of their historical context. Causal mod-

els can, as such, serve to encapsulate current theoretical

understanding of the mechanisms underlying speech motor

control into a compact and rigorous form. Analysis of speech

behavior, even in response to challenging or contrived situa-

tions, may not always be sufficient for inferring the causal

mechanisms of those behaviors. An individual’s sensorimo-

tor behavior is, in general, the result of a complex mixture of

stable and mature control mechanisms, learned and adaptive

strategies, and possible individual-specific speaking strate-

gies and impairments. Therefore, inferring the underlying

mechanisms that contribute to observed behaviors is exceed-

ingly difficult without an underlying framework. Neurologically

relevant, mechanistic models of sensorimotor control pro-

vide a neurocomputational substrate which can aid in estab-

lishing causal relationships among the many component

pathways and model parameters. By modeling and resynthe-

sizing human behaviors, mechanistic models can infer the

mechanisms underlying observed responses, including both

impairment mechanisms and neural adaptation to those

impairments. This process is termed system identification in

an engineering context, and recent advances in methods for

system identification have facilitated application to biologi-

cal multivariate, closed-loop control systems (Engelhart

et al., 2016) and human sensorimotor control systems

(Boonstra et al., 2013; Engelhart et al., 2015). Inroads have

also recently been made in applying similar approaches in

the domain of typical (Mitra et al., 2010) and pathological

(Ciccarelli et al., 2016) speech motor control.

V. CONCLUSION

In scanning the published literature on formal models of

speech motor control, it is perhaps understandable to be left

with the impression that a dizzying variety of qualitatively

distinct models have been presented. Among all the models,

DIVA and TD stand out as having a relatively long history

of representation in the literature, and the efforts to develop

them have remained almost entirely separate. SFC and

FACTS make clear and related modeling contributions that

enable the expressive power to explain specific empirical

results in speech production. ACT is inspired by both DIVA

and TD, but has a structure all its own. GEPPETO is the

result of yet another distinct effort at model development; it

is concerned with biomechanical considerations in the plant.

Clearly, there is a healthy amount of variety in the various

model architectures, especially in their specific use and

method of combining the three essential functional compo-

nents: feedforward, feedback, and model predictive.

However, it is nonetheless possible to view these models as
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belonging to a single, coherent framework. The present paper

has attempted to cut through the difficulties associated with

varying presentation and terminology, and to directly compare

the models against the backdrop of such a framework. By pre-

senting a clear comparison of the points of agreement and dis-

agreement among the various models, as well as establishing

areas where all models can be improved, this work can pro-

vide a foundation for future model development to improve

our understanding of the speech motor system.

RESOURCES

Several of the models discussed in this paper (DIVA,

TD, CASY, and the Maeda model) have been implemented

as software tools, and are available for download online.

Their web addresses are included in the references below.
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APPENDIX A

To aid the speech motor control practitioner, this

Appendix consolidates the key algorithmic steps of three

control architectures: DIVA, TD, and SFC. Bold lowercase

letters represent vectors, and bold uppercase letters repre-

sent matrices. A single overhead dot represents a time

derivative, and a double dot represents a second order time

derivative.

1. DIVA

The DIVA model is a control architecture developed by

(Guenther et al., 2006) that uses a hybrid of feedback control

and model predictive control. The model has been realized

in software, and is available online (Nieto-Castanon, 2016).

a. Algorithm

In the DIVA model predictive controller, the mobility

space, u, and state of the plant, x, are identical, so u¼ x.

Table II describes the variables in DIVA.

(1) Compute a model-predictive control signal (termed feed-
forward in the published literature on DIVA).

(a) Compute an error using the reference target in

mobility space and the current predicted state of

the plant

eu ¼ ruðtÞ � ~u: (A1)

(b) Compute a feedforward control update by scaling

the error signal,

_ump ¼ gmpGeu: (A2)

(2) Compute a feedback-driven control signal using the ref-

erence target and the sensed plant output to compute an

error in task space. Then, use a pseudoinverse Jacobian

to convert the error from task space to mobility space.

Do this in both the auditory and somatosensory feedback

pathways,

eaud ¼ raudðtÞ � yaud; (A3)

_uaud ¼ gaudJðuÞ�1
eaud; (A4)

esomat ¼ rsomatðtÞ � ysomat; (A5)

_usomat ¼ gsomatJðuÞ�1
esomat: (A6)

(3) Combine the feedforward and feedback control updates

to determine the new plant state,

TABLE II. DIVA variables.

Variable Description

eu Error between reference target in mobility

space and last command issued to the plant.

eaud, esomat Error between the reference target in task

space and sensed task space output.

ru(t) Reference target in mobility space. Defined at

each point in time as a region with a center

and bounds of acceptable performance.

raud(t), rsomat(t) Reference target in task space. Defined at

each point in time as a region with a center

and bounds of acceptable performance.

_uaud _usomat Change in mobility space position based on

error in task space. A task space velocity

update.

_u f f Change in mobility space position based on

error in mobility space. A task space veloc-

ity update.

u Mobility space position. Computed by inte-

grating the model predictive and feedback

mobility space velocities.

yaud, ysomat Task space output.

gmp Gain applied to model predictive velocity

update.

gaud, gsomat Gain applied to feedback velocity update.

G Gain with a value between 0 and 1 that

constrains velocities in mobility space from

0 to their maximum.

J(u)�1 Pseudoinverse of the Jacobian. The

pseudoinverse converts errors in task space

to changes in velocity in mobility space.

The pseudoinverse can be computed as the

Moore-Penrose pseudoinverse.
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u ¼
ð
ð _ump þ _uaud þ _usomatÞdt; (A7)

~u ¼ u: (A8)

2. TD

TD is a feedback control architecture developed by

Saltzman and Kelso (1987) and Saltzman and Munhall (1989).

The architecture has been realized in software in the TD

Application (TADA) (Nam et al., 2006) and available online

(Nam, 2012).

a. Algorithm

The TD algorithm is described below, and all variables

are defined in Table III.

(1) Compute error in task space. In TD, the sensory state, y,

and the task-space state, x, are identical, so y¼ x, and

the error is

ex ¼ rxða; tÞ � x: (A9)

(2) Use a dynamical system description of the controller, a

second order ordinary differential equation, to compute

the new acceleration state of the plant in task space as

€x ¼ �M�1B _x �M�1Kex: (A10)

(3) Use a pseudoinverse Jacobian to convert the task space

acceleration to mobility space acceleration by

€u ¼ J�1ðuÞ €x � _Jðu; _uÞðuÞ
� �

: (A11)

(4) Integrate mobility space acceleration to get velocity and

position in mobility space, so

_u ¼
ð

€udt; (A12)

u ¼
ð ð

€udt: (A13)

3. SFC

The SFC is a hybrid feedback/model-predictive control

architecture proposed by Houde and Nagarajan (2011). Note

that the notation used here follows the originally-published

notation, and differs slightly from the simplified notation

used in the main body of the present paper (see Table IV).

a. Algorithm

(1) Create a control update using the current estimate of the

plant state by

ut�1 ¼ Utðx̂t�1Þ: (A14)

(2) Create the new, true plant state using the true plant

dynamics, Gdyn, by

xt ¼ Gdynðut�1; xt�1Þ: (A15)

TABLE III. Task dynamic variables.

Variable Description

K Stiffness coefficients, m by m diagonal

matrix.

ex Error in task space.

x; _x; €x Task space position, velocity, and accelera-

tion, m by 1 vectors.

u; _u; €u. Mobility space position, velocity, and accel-

eration, n by 1 vectors.

rxðaÞ. Reference target in task space, m by 1

vector.

M. Inertial coefficients, m by m diagonal

matrix.

B. Damping coefficients, m by m diagonal

matrix.

J. Jacobian transformation from mobility.

space to task space. An m by n matrix with

elements Jij ¼ @xi=@uj.

J�1 The (pseudo) inverse of the Jacobian. The

Moore-Penrose pseudoinverse may be used,

or other constraints can be applied to allow

inversion of a non-square Jacobian.
_J The time derivative of each element of the

Jacobian.

TABLE IV. SFC variables.

Variable Description

xt True plant state at time t.

x̂ t Estimate of the plant state at time t using

both the sensed plant output and the

predicted plant state.

eyt�N
Error between the sensed plant output and

the predicted plant output.

e~x t
Error update applied to the predicted esti-

mate of the plant state to create x̂ t.

~y t�N The predicted plant output, derived from

estimates of the plant state, estimates of the

feedback delay, and estimate of the plant

transform from state to output.

Ktðeyt�N̂ Þ Transformation (e.g., a Kalman gain)

applied to the error between the predicted

and sensed plant output. The transformation

allows the actual plant output to influence

the estimate of the plant state.

~xðtjt�1Þ�N̂ Predicted estimate of the plant state using

only the previous estimate of the plant state,

the control signal, and the estimated plant

dynamics.

Gdyn, Ĝdyn True and estimated plant dynamics.

Gout, Ĝout True and estimated transformation from

plant state to plant output.

yt True plant output.

ut Control update to the plant.

x̂ðtjt�1Þ Estimate of the plant state based on the con-

trol update to the plant, the estimate of the

plant dynamics, and the previous estimate

of the plant state.

Ut(xt) Controller that issues a control update based

on the current estimated state of the plant.

While a reference target is not shown in

Houde (2011), presumably the reference is

internal to Ut.

N, N̂ Actual delay and estimated delay between

the plant output and the sensing of the plant

output.
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(3) Create a new, predicted estimate of the plant state using

the previous estimate of the plant state, x̂t�1, the previ-

ous control signal, ut–1, and an estimate of the plant

dynamics, Ĝdyn, by

~xtjt�1 ¼ Ĝdynðut�1; x̂t�1Þ: (A16)

(4) Generate the subsequent plant output using the true plant

transformation from plant state to plant output by

yt ¼ GoutðxtÞ: (A17)

(5) Create a correction term to the plant state estimate using

the sensed feedback from the true plant by

yt�N ¼ Goutðxt�NÞ; (A18)

~yt�N̂ ¼ Ĝoutðut�1; x̂ðtjt�1Þ�N̂ Þ; (A19)

eyt�N̂ ¼ yt�N � ~yt�N̂ ; (A20)

e~x t
¼ Ktðeyt�N̂ Þ: (A21)

(6) Combine the initial plant state estimate and the correction

term to create the current estimate of the plant state by

x̂t ¼ ~xtjt�1 þ e~x t
: (A22)

APPENDIX B

This appendix presents two articulatory speech synthe-

sizers commonly referenced in the literature: the CASY and

the Maeda model. Bold lowercase letters represent vectors,

and bold uppercase letters represent matrices. A single over-

head dot represents a time derivative, and a double dot repre-

sents a second order time derivative.

1. CASY

CASY is a geometric model of the vocal tract based on

the work of Mermelstein (1973) and developed by Rubin

et al. (1996) and Iskarous et al. (2003). The governing equa-

tions are presented below, taken from Lammert et al. (2013).

The “q” variables in Lammert et al. (2013), that represent

the articulators in mobility space, have been renamed to “u”

in this paper for consistency of notation (see Tables V and

VI for details about the variables/constants),

xPRO ¼ ulx; (B1)

xLA ¼ lut sin ðautÞ þ llt cos ðujaÞ þ uuy � uly; (B2)

a ¼ ucl sin ðuja þ ucaÞ; (B3)

b ¼ �ucl cos ðuja þ ucaÞ; (B4)

xTBCL ¼ a cos
a� oxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� oxð Þ2 þ b� oyð Þ2
q !

; (B5)

xTBCD ¼ rts �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� oxÞ2 þ ðb� oyÞ2

q
þ rtb

�
; (B6)

c ¼ uja þ uta þ stbðucl � ltbÞ; (B7)

d ¼ aþ rtb sin ðuja þ atcÞ þ utl sin ðcÞ; (B8)

e ¼ b� rtb cos ðuja þ atcÞ � utl cos ðcÞ; (B9)

xTTCL ¼ a cos
d � oxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d � oxð Þ2 þ e� oyð Þ2
q

0
@

1
A; (B10)

xTTCD ¼ rtb �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd � oxÞ2 þ ðe� oyÞ2

q
: (B11)

2. Maeda articulatory synthesizer

The Maeda articulatory speech synthesizer is a variable

cross-sectional area, tube model of the vocal tract.

Resonances of the tube can be computed, and these resonan-

ces are the formants. The formants can then be used to shape

a vocal source (voiced or unvoiced) to create speech. A

MATLAB instantiation of the Maeda synthesizer was created

by Ghosh and available for download (Nieto-Castano, 2017).

Ciccarelli (2017) created a polynomial approximation to

the vocal tract component to allow fast formant computation

and fast, tractable computation of the pseudoinverse of the

TABLE V. CASY variables.

Variable Description

x Task space variable

u Mobility space variable

LX Lip protrusion

UY Upper lip vertical displacement

UT Upper teeth

LY Lower lip vertical displacement

JA Jaw angle

CA Tongue body angle

CL Tongue body length

TL Tongue tip length

TA Tongue tip angle

LA Lip aperture

PRO Lip protrusion

TBCD Tongue body constriction degree

TBCL Tongue body constriction location

TTCD Tongue tip constriction degree

TTCL Tongue tip constriction location

TABLE VI. CASY constants.

Constant Value

lut 1.1438

aut �0.1888

llt 1.1286

ox 0.7339

oy �0.4562

rts 0.4

rtb 0.02

atc 1.7279

ltb 0.8482

stb 4.48
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Jacobian. The polynomial approximation was determined by

running the Ghosh implementation of the Maeda model

across a set of parameters, uniformly sampled from the

mobility space of the model, to create a lookup table of

parameters and formant values. Formant points outside the

standard vowel quadrilateral as determined by visual inspec-

tion were excluded. The remaining pairs of articulator points

and formants were then fit using a least squares polynomial

approximation. The order of the polynomial was a compro-

mise between the fit to the data and the complexity of the

polynomial. It was found that a second order polynomial

achieved a reasonable balance between these two require-

ments. While the mapping from articulators to formants is

preserved to within a certain error, it has not been evaluated

whether the relationship between articulators encoded by the

polynomial fundamental alters the trajectories of articulators

in previous implementations of the Maeda model.

1In the speech motor control literature, the term “articulatory space” is

often used instead of “mobility space.” The latter term is adopted from the

robotics literature (Sciavicco and Siciliano, 2012) here to provide a neutral

terminology for referring specifically to the configuration of the plant,

whereas terminology used in the literature often leads to confusion over

whether the term “articulatory” refers to low-level descriptions of the plant

or high-level tasks spaces defined in articulatory terms.
2For this example, the simplifying assumption is made that the feedback

signal is in task space, i.e., yx.
3Optimal here means closest to the true state of the plant, where “closest”

means having the smallest mean squared error.
4The full DIVA program can learn the Jacobian statistically, through a

“babbling” phase, which afford the opportunity to switch between models.
5The predicted position has been suggested to be the representation of the

articulatory positions (mobility state) in the motor cortex (Guenther,

2016).
6The description of SFC presented here uses a different notation than in

Houde and Nagarajan (2011), simplified for clarity of presentation. For a

more complete mathematical description, see Appendix A.
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